Module Overview

Module 1	Aerospace Systems Engineering
Content	Day 1: Aviation requirements
	Business requirements
	Aviation business: airlines, OEMs, suppliers, MRO, new markets and players
	Strengths and weaknesses of the industry in Germany and Baden-Württemberg
	Environmental protection requirements
	Environmental impact of aviation
	Risks and opportunities (EU and global)
	Regulatory requirements
	Laws and authorities in the EU and USA
	Building regulations and standards
	Recommendations and standards
	Safety requirements
	Acceptable probability of failure, why so extreme?
	Sources of danger (technical failure, human factors, environmental effects, security)
	Basics of safety analysis
	Day 2: Aerospace Management
	Aircraft System Development Process (oriented to SAE ARP-4754)
	Aerospace Management and Leadership (practical aspects)
	Safety vs. Compliance
	Safety vs. Security
	V-Modell vs. Agility
	Human Factors
	Day 3: Aircraft Safety Assessment
	Aircraft Safety Assessment (oriented to SAE ARP-4761)
	Day 4: Flight System Technology and Control
	Overview of aircraft structure
	Aerodynamics
	Flight Mechanics and Control
	Flight Control System
	Auto Flight System
	Day 5: Hydraulic and Navigation
	Hydraulic Power System
	Airbus A320
	Airbus A380
	Navigation System
	Cockpit Systems
	Air Data and Inertial Sensors
	Air Data and Inertial Reference Systems (ADC/CADC/ADIRU)
	Radio Navigation (Radar, ILS, GNSS)
	Day 6: Communication
	Communication media
	cable / fibre optics /wireless
	Communication patterns
	CSMA / P2P
	Protocols
	ARINC 429-629 / AFDX / PCIeX/ MIL-STD 1773
	Day 7: Degrees of Redundancy

	 Dual Simplex Redundancy Duplex Redundancy Triplex Quadruplex Multi-Duplex / Multi-Triplex
Self-study phase	Material (literature, videos, simulations, etc.) is made available on an e-learning platform for self-study between the classroom sessions
Project work	Independent design of a primary/secondary flight control system for a future aircraft
Prerequisites	Bachelor's degree or relevant professional work experience
Learning objectives / applicability	 Design expertise in avionics technologies and architectures Comprehensibility of specifications and framework conditions Decision-making competence with regard to safety and security processes and methods (finding compromises)
Dates	11.10.25, 08.11.25, 06.12.25, 30.01.26, 31.01.26, 27.02.26, 28.02.26

Module 2	Fundamentals of Spacecraft Technology
Content	Day 1: Fundamentals of Space Engineering
	 Fundamentals of Space Mission Design, Operations and Mission Control
	 Definition of a Space Mission & Key Actors
	 Space Mission Types & Objectives
	 Space Mission Destinations
	 Key Elements of a Space Mission
	 Space Mission Requirements & System Drivers
	 Overview Spacecraft Subsystems
	 Overview Space Mission Development Phases
	 Overview Space Mission Operations
	Basics of Launcher and Space Vehicle Propulsion
	 Basic Performance Requirements of Space Propulsion
	 The Rocket Equation and Important Rocket Parameters
	 Chemical Propellant Rockets
	 The Staging Principle
	 Electrical Thrusters
	 Alternative Propulsion Concepts
	General Definitions and Unperturbed Orbital Motion (Day 2)
	 Coordinate Frames and General Definitions
	o The Two-Body Problem
	 Orbit Geometry
	 Space Velocities
	Day 2: Space Environment and its Impacts
	The Space Environment
	 Major Factors of Influence on the Space Environment
	 Gravitational Fields
	 Atmospheres and Ionospheres
	 Magnetic Fields
	 Electromagnetic and Particle Radiation
	 Solid Matter
	Impacts of Space Environment on Spacecraft and Mission Design
	Overview of Design Issues in Pre-operational Phase
	 Impacts of the Space Environment
	Overview
	 Gravitational Fields / Microgravity
	 Vacuum, Atmospheres and Ionospheres
	Radiation / Magnetic Fields
	Solid Matter

- Overview of Design Issues for Post-Operational Phase
- Summary

Day 3: Spacecraft Subsystems

- Concepts of Spacecraft Structures and Materials
 - Spacecraft Structures
 - Tasks and Categories
 - Structural Loads During Mission Phases
 - Key Characteristics and Design Process
 - Spacecraft Materials
 - Selection Criteria
 - Material Erosion Examples
- Concepts of Spacecraft Thermal Control
 - Thermal Environment & Objectives of Thermal Control
 - External Heat Loads
 - Internal Heat Loads
 - Objectives of Thermal Control
 - Thermal Analysis and Tests
 - Heat Transfer Mechanism
 - Heat Balance Equation for Spacecraft
 - Thermal Analysis and Tests
 - Thermal Control Hardware
 - Passive Thermal Control
 - Active Thermal Control
- Fundamental Concepts of Communication in Space
 - Important Definitions and Boundary Conditions
 - o Electromagnetic Waves & Basics for Space Communication
 - Modulation, Coding, Protocols
 - Important System Components
 - o Link Budget
 - Important Aspects Human Spaceflight
 - o Examples
- Concepts of Spacecraft Power Systems
 - o Power system functions and configuration
 - o Primary energy sources and energy conversion
 - Overview
 - Solar power
 - Radioisotope Thermoelectric Generator (RTG)
 - Nuclear reactors in space
 - Energy storage systems
 - Overview
 - Secondary batteries
 - Regenerative fuel cells
 - o Power systems selection criteria

Day 4: Translational Motion (Orbit Control)

- Perturbed Orbital Motion
 - o Variations in the Orbital Elements due to General Perturbing Forces
 - Perturbing Forces Acting on a Satellite
 - o Effects of Atmospheric Drag on the Satellite Orbit
 - Nodal Precession
- Orbital Manoeuvres and Interorbital Transfers
 - One-Impulse Manoeuvres
 - Two- and Three-Impulse Manoeuvres
 - Continuous Thrust Manoeuvres
 - Effects of Impulsive Manoeuvres on the ISS Orbit

Day 5: Rotational Motion (Attitude Control)

• Fundamentals of Attitude Determination and Control

	One Impulse Manager
	One-Impulse Manoeuvres The and Three Impulse Manaeuvres
	Two- and Three-Impulse Manoeuvres
	Continuous Thrust Manoeuvres
	Effects of Impulsive Manoeuvres on the ISS Orbit
	Day 6: Applied Orbital Mechanics for Vehicle Operations
	Access to Space (Day 5)
	 Launch Sites and Launch Directions
	 Launch Window and Launch Time
	o Launch Profile
	 Launch Abort Modes
	Fundamentals of Rendezvous, Departure and Relative Motion
	 Launch and Orbit Insertion
	o Phasing
	 Far Range Rendezvous
	 Close Range Rendezvous
	 Final Approach and Docking
	o Departure
	Deorbit, Reentry and Landing
	Overview & General Aspects
	 Undocking & Deorbit
	o Re-entry
	 Types & Energies of Atmospheric Entry Maneuvers
	 Important Parameters & Definitions
	 Ballistic, Lift-assisted & Skip-assisted Re-entry
	 Re-entry Trajectory & Corridor
	 Remarks Stability & Thermal Protection System
	 Landing
	 Disposal Aspects
	Day 7: Exploration
	Introduction to Exploration Flight Dynamics and Navigation
	 Possible destinations and their features
	o Basic concepts
	 Mission to the Moon
	 Interplanetary missions
	 Communication and navigation methods
	Interstellar Spaceflight Visions
	 Dimensions, Energies, Relativity
	Why? Where Do We Stand?
	 Concepts
Self-study phase	Material (literature, videos, simulations, etc.) is made available on an e-learning platform for
	self-study between the classroom sessions
Project work	Topics will be announced during the course
Prerequisites	Bachelor's degree or relevant professional work experience
Learning	Comprehensive overview of all key elements of a space mission and knowledge of the
objectives /	interrelationships.
applicability	 Understanding of the space environment and its impact on the spacecraft and the
	mission.
	Comprehensive overview of all relevant subsystems of a spacecraft.
	Understanding of the physical laws of orbital mechanics and their practical effects, the
	most relevant perturbations and knowledge of various possibilities for orbit
	modification, including their advantages and disadvantages.
	Basic understanding of the attitude dynamics of spacecraft and an overview of the
	possibilities of active and passive attitude control.
	 Understanding of the background to central space manoeuvres (rocket launch,
	rendezvous with a space station, re-entry) and classification of these.
L	

	Overview of the requirements for exploration missions that differ from earthbound
	missions as well as space visions and their categorisation.
Dates	03.11.25, 04.11.25, 05.11.25, 10.11.25, 11.11.25, 12.11.25, 13.11.25

Module 3 Content	Day 1: Radio-frequency (RF) basics Line theory, scattering parameters, Smith chart, practical work: simulations with LTSpice and ADS Realisation of passive RF components Strip lines, couplers, filters RF measurement technology - network analyser Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components Transceiver architectures, noise, non-linearities Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator Introduction to spectrum analyser, practical work: Measurements on a mixer and with
	 Radio-frequency (RF) basics Line theory, scattering parameters, Smith chart, practical work: simulations with LTSpice and ADS Realisation of passive RF components Strip lines, couplers, filters RF measurement technology - network analyser Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components
	Line theory, scattering parameters, Smith chart, practical work: simulations with LTSpice and ADS Realisation of passive RF components Strip lines, couplers, filters RF measurement technology - network analyser Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components Transceiver architectures, noise, non-linearities Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator
	 Realisation of passive RF components Strip lines, couplers, filters RF measurement technology - network analyser
	 Realisation of passive RF components Strip lines, couplers, filters RF measurement technology - network analyser Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components Transceiver architectures, noise, non-linearities Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator
	 Strip lines, couplers, filters RF measurement technology - network analyser Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components
	 RF measurement technology - network analyser Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components
	Introduction to network analyser, practical work: measurements with network analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components Transceiver architectures, noise, non-linearities Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator
	 analyser (NWA) and on the topics of radio-frequency fundamentals, filters, couplers Day 2: Active RF-components
	 Day 2: Active RF-components
	 Active RF-components Transceiver architectures, noise, non-linearities Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator
	Transceiver architectures, noise, non-linearities Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator
	 Signal generation Oscillator, PLL, phase noise RF-Measurement Technology – Spektrum analysator
	Oscillator, PLL, phase noise • RF-Measurement Technology – Spektrum analysator
	RF-Measurement Technology – Spektrum analysator
	introduction to spectram analyses, practical works weasarements on a mixer and with
	a spectrum analyser (SA)
	Day 3:
	What is Radar?
	Frequency ranges, technologies, wave propagation, what does a radar sensor see?,
	resolution and accuracy
	Radar equation and RCS
	Radar equation for different targets, target properties
	Modulation methods
	Introduction to modulation and continuous wave radar, pulse modulation
	Day 4:
	Angular radar systems
	Fundamentals of angulation, phased arrays, antennas for radar systems, practical
	boundary conditions
	Synthetic aperture radar (SAR)
	Functionality, application examples and limitations
	New trends in radar sensor technology
	Day 5:
	Digital signal processing for radar
	Distance estimation, improving resolution in the distance direction
	Simulations for signal processing
	Practical work: FFT for distance estimation, distance resolution, accuracy, influence of
	SNR
	Radar measurements with a 77 GHz sensor
	Practical work on real hardware and with real signals
	Day 6:
	Digital signal processing in radar
	Velocity estimation, angle estimation, multi-antenna systems, MIMO, beamforming
	Simulations for signal processing
	Practical work: speed estimation with 2D and 3D FFT
	Design of the FMCW multi-ramp method
	System analysis for a real sensor, practical work: commissioning of 60 GHz radar
	sensors
	Day 7:
	Signal evaluation with radar

	 CFAR, clustering, tracking, practical work on CFAR, automotive radar toolbox, tracking toolbox Measurements with a 60 GHz FMCW radar Practical work: distance, speed and angle measurements, discussion of the measurement results Final discussion
Self-study phase	Material (literature, videos, simulations, etc.) is made available on an e-learning platform for self-study between the classroom sessions
Project work	Current topic of radar technology in aerospace or implementation and evaluation of real radar measurements for distance, speed and angle determination.
Prerequisites	Bachelor's degree or relevant professional work experience
Learning objectives / applicability	 General and specialised knowledge in the field of radar technology at system and component level Fundamentals of high-frequency technology and its significance at system level Evaluation of radar signals across the entire processing chain
Dates	22.09.25, 23.09.25, 08.10.25, 09.10.25, 13.10.25, 14.10.25, 21.10.25

Module 4	Aerospace Software Engineering
Content	Day 1:
	Overview of the specifications
	SAE ARP-4754A: System Development Process
	SAE ARP-4761: Safety Assessment & Functional Hazard Analysis
	RTCA DO-178C: Software Development & Certification
	RTCA DO-330: Tool Qualification
	RTCA DO-331/332/333: Model-Based, Object-Oriented, Formal Methods
	RTCA DO-254: Hardware Design Assurance
	RTCA DO-160: Environmental Conditions & Testing
	RTCA DO-326A / DO-356A: Airborne Security (Cybersecurity Guidelines)
	Aerospace Software Project Management
	Aerospace Software Project Management
	Project life cycle in the aviation context
	Roles: Certification Authority, Design Assurance Engineer, Project Manager
	Requirements for traceability, documentation, process maturity
	Differences to classical/agile SW projects
	Version Management / Configuration Management
	Introduction to Configuration Management (CM)
	What is CM and why is it critical in aerospace?
	Overview of configuration objects: Code, requirements, tests, documents
	Lifecycle of a configuration item (Create - Modify - Release - Archive)
	Aviation requirements for a KM system
	Clear identification and versioning
	Change tracking and release processes
	Auditability and baseline control (e.g. configuration status accounting)
	Evidence in DO-178C & DO-254 (e.g. Configuration Management Plan)
	Tools for use
	Comparison: Git, Subversion (SVN), ClearCase
	Industry-standard tools: GitLab, IBM Rational, Polarion, Helix Core
	Introduction to Git (hands-on/overview)
	Repositories, commits, branches, tags
	Best practices for structured KM in Git (e.g. Git Flow) Toolchain e.g. Git Flow)
	Toolchain integration (e.g. Git + Jenkins + DOORS)
	Problem Reporting & Change Management (approx. 60 min)
	Problem Reporting
	Classification of bugs

Traceable bug lifecycle (Detection \rightarrow Logging \rightarrow Tracking \rightarrow Resolution)

Tools: JIRA, Bugzilla, Polarion ALM, gitlab, github

Change management

Change request, impact analysis, approval workflows Connection with traceability and safety assessment

Review & approval in DO-178 environment

Risk management in aviation projects (approx. 45-60 min)

Systematic risk identification (e.g. technical, scheduling, safety-related risks)

Methods: FMEA, FTA, hazard analysis (ARP-4761) Risk treatment: avoidance, mitigation, acceptance Risk management documentation & review

Dissimilarity

Definition: What does 'dissimilar software' mean in the context of safety &

certification?

Use in redundancy architectures (e.g. various implementations, different

tools/compilers)

Advantages: Fault independence, increased fault tolerance

Challenges: Verification, costs, maintenance

Conclusion / summary

Review of the standards landscape and their interaction

Discussion of typical practical problems with KM, change management, dissimilarity Q&A

Day 2:

V-Model Development process (RTCA DO-178)

Introduction: DO-178C and the V-Modell Structure of the development process Requirements development in the V-Modell Software design in a safety-critical environment

Implementation and integration Traceability & artefact structure Exemplary documents and artefacts

Practical exercise / workshop part

Summary & reflection Optional: In-depth topics

Comparison with ISO 26262 (e.g. automotive vs. aviation)

Day 3:

V-Model V&V-Process (DAL-A)

Introduction to the V-Modell

Verification and validation in the V-Modell

Introduction to DAL (Design Assurance Levels) according to DO-178C

V&V process at DAL-A in detail

Tools and techniques for V&V at DAL-A

Example scenario / mini-workshop

Conclusion / reflection

Checklist for V&V at DAL-A

What distinguishes DAL-A from lower levels (e.g. B/C)?

Typical audit questions / preparation for certification

Q&A session & summary

Optional bonus topic (if there is time):

Tool qualification according to DO-330

Differences to ISO 26262 / IEC 61508

Day 4 and 5:

Software Architecture

IMA ARINC-653+ARINC-664

Fundamentals of IMA technologies

IMA platform concepts

IMA and aviation systems

ARINC 653 - API, operating system,

Development and realisation of an application with the ARINC 653 API

Signal processing and bus communication with AFDX

Design and verification of a system function

Worst case execution time

WCET basics

Assessment of algorithms (O-notation)

Factors influencing the WCET

Measurement and procedure for determining the WCET

Static WCET analysis

Measurement-based WCET analysis

Tool support & frameworks

WCET in real-time systems

Challenges & limits

Application examples

Project or presentation

Multi-core

Multicore basics Architecture

Parallelisation techniques

Thread programming

Synchronisation and memory access

Programming models for multicore

Multicore optimisation

Debugging & testing in multicore environments

Operating system support for multicore

Performance measurement and tuning

Applications of multicore programming

Bonus topics (advanced)

Model-based software development

Code generation

Basics and motivation

Types of code generation

Tools & frameworks for code generation

Advantages and disadvantages of code generation

Code generation in build processes

Template-based code generation

Domain-specific languages (DSLs)

Security & quality of generated code

Code generation in AI development

Reverse engineering and re-generation

Case studies and practical examples

Day 6 and 7:

Software Development

Defensive programming and safe C

Error handling and exception handling

Validation of inputs

Contract-based programming (design by contract)

Unit testing & test-driven development (TDD)

Code reviews & static code analysis

Use of safe programming patterns

Logging and monitoring

Documentation and comprehensibility

Defensive programming in a team context

	Companies of different and arranged to be a second
	Comparison of different programming languages
	Defensive programming vs. offensive techniques
	Configuration
	Fundamentals of configurable systems
	Configurability vs. self-adaptation
	Problems of configurable/self-adaptable systems
	CI/CT
	Introduction: Continuous Integration (CI) & Continuous Testing (CT)
	Tool: Jenkins
	Git and Jenkins - interaction
	Setting up a workflow
	Code coverage
	Performance measurement in Cl
	Expandable additional topics (optional)
	Security checks (SAST)
	Error and log analysis
	Containerisation & CI/CD
	Best practices & anti-patterns
	Presentation/project report
	Al in development
	Introduction to AI
	Al methods
	Retrieval-Augmented Generation (RAG)
	Al-supported tools in software development
	Al in CI/CD pipelines
	Challenges and risks
	Practical examples and tools
	Future & outlook
	Presentation or work:
	Software reuse / COTS
	What is software reuse
	Integration into the V-model
	Traceability
	Types of software reuse
	Evaluation and selection of COTS
	Quality aspects and risks of reuse
	Integration techniques
	Documentation and governance
	Cost-effectiveness of software reuse
	Practical examples
	μC / memory / ASIC / FPGA
	Design of an avionics computer
	Consideration of individual components
	Consideration of marviadal components
Self-study phase	Material (literature, videos, simulations, etc.) is made available on an e-learning platform for
Jen study priase	self-study between the classroom sessions
Project work/	Project work and presentations by the participants during the week. At the end, a written
exam	exam of 2 hours: 1 hour online test with questions on the various topics; 1 hour working on a
CAUITI	specific task using the methods and techniques learnt.
Prerequisites	Bachelor's degree or relevant professional work experience
Learning	Participants will be familiar with the most important aviation-specific standards (e.g. DO-
objectives /	178C, ARP-4754A) as well as their interrelationships and requirements for software
applicability	
applicability	development processes. They understand the basics of configuration, change and risk
	management and can categorize common tools such as Git and JIRA.
	Participants understand the structured development process in the V-model in accordance with DO 178C including the greation and desumentation of requirements, software design.
	with DO-178C, including the creation and documentation of requirements, software design

	 and implementation. They know how these phases are linked and made traceable in safety-critical projects. Participants know the requirements for verification and validation according to DO-178C for safety-critical software of class DAL-A. They know how verification is planned, carried out and documented, including the use of suitable tools and coverage metrics. Participants understand the basics of IMA, ARINC-653/664 and the architecture of modern avionics systems. They can evaluate real-time conditions (e.g. WCET), multicore challenges and model-based development approaches in safety-relevant systems. Participants know the principles of defensive programming, configurable systems and CI/CT pipelines with tools such as Jenkins and Git. They will have an overview of Alsupported development methods, software rouse/COTS use and system integration on a supported development methods.
	supported development methods, software reuse/COTS use and system integration on a μC , FPGA and ASIC basis.
Dates	25.10.25, 22.11.25, 20.12.25, 16.01.26, 17.01.26, 13.02.26, 14.02.26