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Abstract

We present a method for constructing certain expander graphs, as described in an article by
N. Alon, O. Schwartz and A. Shapira [ASS08], with detailed preparations and explanations about
all the mathematical and graph-theoretical concepts involved.

An extensive mathematical appendix may serve as refresher for those with undergraduate maths
education and doubles as a reference for the necessary calculations in the main part.
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Chapter 1

Introduction

1.1 Problem

Expander graphs constitute a family of graphs with high yet sparse connectivity. When arbi-
trary edges are deleted, the resulting graph remains a single connected component for quite some
time. Differently put, there is no way to cut through the graph’s representation without slicing a
significant number of edges.

There are practical applications for such graphs, e.g. in network planning, where it is a benefit
to be able to tolerate single connections breaking down, and to re-route – this applies to traffic
networks as well as the electric grid or internet connections.

However, expanders are also used in theoretical contexts, e.g. in I. Dinur’s proof of the PCP
theorem (PCP = probabilistically checkable proof) [Din05]. Further applications can be found
in [HLW06].

1.2 Task Overview

The aim of this thesis is an easy-to-follow description of how to construct expander graphs, explain-
ing all the necessary steps and providing the mathematical background that cannot be addressed
in the confines of a research paper (or that might be expected from professional readers).

The thesis should be accessible to anyone interested with no more than undergraduate-level
mathematics education.

1.3 Organization of this Thesis

The main body of this work comprises three parts:

1. An extensive preparatory chapter (2) introducing and illustrating concepts from graph theory
as they are required later. This is by no means comprehensive and cannot substitute any
textbook (like, for instance, [Nic18] (spectral graph theory) or [Sta17] on regular graphs).

2. The main construction chapter (3), modeled after an article [ASS08] by N. Alon, O. Schwartz
and A. Shapira which introduces a concise and effective way to construct expander graphs
with fixed degree (that is, the number of edges connecting a graph node to other nodes is
not dependent on the graph’s node count).

3. Several chapters (A to E) constituting a mathematical appendix, intended to refresh under-
graduate maths knowledge and to serve as a reference for the calculations in the two chapters
mentioned above.

The appendix is designed incrementally, so that it can be perused from start to finish if so
desired or needed.

Because the two main chapters frequently reference statements from the maths appendix, it
can be helpful to glance over the contents of the latter, if only to familiarize oneself with notation,
but perhaps also in order to ascertain the range of concepts used in the main part.
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Chapter 2

Preliminaries

In order to approach the main subject, we first introduce some basic concepts from (spectral)
graph theory. This is not intended in any way as a comprehensive overview, but as a selection of
definitions and examples relevant to the particular topic of regular edge expanders. The interested
reader may supplement the material with textbooks like [Nic18, Sta17].

We first state some basic properties of undirected graphs, particularly relating to their spectra.
After this, we offer some additional properties of regular graphs, before we look at several examples.

We will refer to several results developed in the mathematical appendix: This chapter mainly
relies on the linear algebra section A.3 of the first appendix chapter, and on the eigenvalue problem
(chapter C). Readers familiar with determinants and permutations can ignore chapter B (situated
in between), but the concept of determinants is in fact vital to the solution of the eigenvalue
problem; we will calculate several determinants in the example section of this chapter.

2.1 Graph Vocabulary

We start by defining an undirected graph. We introduce adjacency matrices, which contain (at least
for this work’s purposes) all the information of a graph, provided that the vertices (a.k.a. nodes)
are named with integer numbers.

The notion of node degree will allow us to define regular graphs; this special kind of graph will
be examined in more detail because the expander graphs constructed in the main chapter 3 will
all be regular.

We also present two ways to color graphs: vertex and edge coloring.
After that, we will introduce the concept of a graph’s spectrum in a separate subsection.

2.1.1 Basic Definitions for Graphs

Undirected graphs are collections of vertices (a.k.a. nodes; we will use both terms interchangeably)
that are connected in some specific way. For undirected graphs, those connections are symmetric
(if node j is connected to node k, then k is also connected to j) and can be visualized as lines
between the various nodes1. We start with multi-graphs and then specialize for simple graphs.
In preparation, and to allow for a unified approach to describe the connections (edges), we first
introduce the concept of a half-edge.

Half-Edges, Node Degrees, Edges, Multi-Edges and Loops

We start with multiple definitions, after which we will elaborate with some examples.

Definition 2.1

• A node (a.k.a. vertex) may be any object that could be understood as “connected to some
other object” in a graph. Such connections are called edges (see below).

• An undirected graph is a pair of a set of vertices V and a structure describing the undirected
edges.

1For directed graphs, one would use arrows.
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• An undirected half-edge is one half of an undirected connection ( edge) in a graph. Its fixed
end is incident with (read: connected to) exactly one node of a graph. Its open end can be
combined with the open end of exactly one other half-edge when building the graph.

• The number of half-edges of a node j is called the node’s degree, denoted deg(j).

• An undirected edge is a fixed pair of undirected half-edges.

• A loop is an edge whose half-edges both are incident with the same node.

• An r-fold multi-edge exists between two different nodes if there are r edges between them.
r-fold multi-loops involving a single node are also possible.

We should note that directed graphs differ in that there are two kinds of half-edges (emanating
and incoming, as it were), and that directed edges would have to be combinations of one half-edge
of each kind. We will, however only be dealing with undirected graphs in this work.

Before we draw some formal conclusions, we visualize a node with degree 4.

Figure 2.1: A degree-4 node with half-edges

Now, in a graph, there are only edges, no half-edges. When building a graph, all the half-edges
must therefore be paired up by connecting each of them to another half-edge. An analogy for
half-edges vs. edges would be the electrons vs. covalent molecular bonds in chemistry (ignoring the
possibility of free radicals, that is).

This node might be connected to four other nodes, with a single edge each:

Figure 2.2: A degree-4 node, simply connected

Or it might be connected to only two other nodes, and have a loop; or have a double loop:

Figure 2.3: A degree-4 node with a loop (left), with a double loop (right)

10



Or it might be connected to two other nodes, but with a triple edge in one case; or to one, with
a loop:

Figure 2.4: A degree-4 node with a triple edge (left), with a loop and double edge (right)

For all the above examples (not an exhaustive list), the black node has degree 4.
We collect some observations:

Corollary 2.2 For any node in a graph, its loops contribute two each to its degree. Edges to other
nodes contribute one each.

For any graph, the degrees of its nodes sum up to an even number.

Proof: Any loop is comprised of two half-edges belonging to the same node. Edges between two
different nodes contribute one half-edge to each of those nodes.

Since a graph is comprised of nodes and edges, each edge contributes two half-edges to the total
sum of degrees. There are no unconnected half-edges in a graph. �

Corollary 2.3 In any graph, the number of nodes with odd degree is even.

Proof: If there were an odd number of nodes with odd degrees, their respective degrees would some
up to an odd number. In the overall graph, there would have to be one unconnected half-edge,
which is not permitted. �

Undirected Graphs

In definition 2.1 (p. 9), we left the description of a graph’s edges somewhat vague – this is because
there are several ways to specify edges in a graph. For a directed graph with vertex set V , we
could comprise the edges as a subset of V × V ; if (j, k) belonged to that subset, the graph would
contain a connection from node j to k.

In undirected graphs, ordered pairs would not be such a good description because the con-
nections in an undirected graph are symmetric. The symmetry could rather be expressed by
specifying not tuples but multi-sets2 (“bags”) of size two. However, this would not suffice if there
were multiple loops or multi-edges.

The most flexible method of expressing graph edges is by an edge function e : V × V → N0.
We opt for this approach and specify our definitions for undirected graphs:

Definition 2.4 An undirected multi-graph is a pair (V, e) of a set of vertices (a.k.a. nodes) iden-
tified via their integer labels, V = {1, · · · , n}, together with a function e : V ×V → N0 that specifies
connections (edges) between vertices:

For j, k ∈ V , e(j, k) returns the number of half-edges of node j that connect it with node k.

Corollary 2.5 Let G = (V, e) be an undirected multi-graph with edge function e, and j, k ∈ V .
Then, e(j, k) equals either the number of edges between nodes j and k if k 6= j, or twice the

number of loops for node j if k = j.
The edge function is symmetric: e(k, j) = e(j, k).

Proof: If k 6= j, the number of edges connecting j and k equals the number of half-edges at node j
contained in those edges (refer to definition 2.1, p. 9, for details). If k = j, the function counts
all half-edges connecting j with j, two of which make up one loop. For any such loop, both its
half-edges are counted.

Since the connectivity in an undirected graph is symmetric, for k 6= j, there are as many half-
edges at node k connecting it with node j as there are half-edges at j in connections with k; hence
the symmetry of e. �

Definition 2.6 An undirected simple graph is an undirected multi-graph (V, e) whose edge func-
tion e only maps to {0, 1}.

2ordinary sets would not allow the same node to appear twice, which it would in a loop

11



Corollary 2.7 If G = (V, e) is an undirected simple graph, G is loop-free and has no multiple
edges.

Proof: Edges between different nodes can only be 1-fold.
Since e(j, j) is even for any undirected multi-graph (cf. corollary 2.5), the only even number in

{0, 1} is zero. �

Adjacency Matrices

Instead of the edge function, we may express the connectivity in a graph G = (V, e) with a matrix,
too, if we label the nodes from 1 to n = |V |:

Definition 2.8 For a graph G = (V, e) with n := |V |, its adjacency matrix is a matrix of integer
entries from Nn×n0 :

∀j, k ∈ V : Ajk := e(j, k)

Corollary 2.9 For an undirected graph G = (V, e), its adjacency matrix A is symmetric. If G is
a simple graph, the elements of A are either 0 or 1, and the diagonal elements of A are zero.

Proof: Since e(k, j) = e(j, k), Akj = Ajk. By definition A.25 (p. 77), this means that A is sym-
metric. In a simple undirected graph, definition 2.6 stipulates that e returns either 0 or 1, and also
that e(j, j) = 0 for all j ∈ V . �

Example: We consider the simple graph G1 with six vertices and connections as shown in
figure 2.5. The adjacency matrix A of G1 (and, equivalently, its edge function e), is given by:

A(G1) =


0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 0 0 0
0 1 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0



1 2

3

4 5

6

Figure 2.5: A simple graph (G1)

In a multi-graph (as opposed to a simple graph), multiple connections between nodes are
allowed; also, the graph may contain loops, i.e. edges that connect a vertex with itself. Such
graphs can, for instance, be used to describe finite state machines in theoretical computer science.

Example: We consider the multi-graph G2 with six vertices and connections as shown in fig-
ure 2.6 (p. 13). The adjacency matrix A of G2 is given by:

A(G2) =


0 2 2 0 0 0
2 0 1 1 0 0
2 1 0 1 0 0
0 1 1 0 2 0
0 0 0 2 2 0
0 0 0 0 0 4


We observe that G2’s adjacency matrix has two (even) non-zero diagonal entries – one for the

single loop of node 5, and one for the double loop of node 6. Corollary 2.9 is valid for multi-
graphs, too, as is definition 2.8 for the adjacency matrix: All undirected graphs (simple or not)
have symmetric adjacency matrices.

12



1 2

3

4 5

6

Figure 2.6: A multi-graph (G2)

To finish off our general observations on adjacency matrices, we confirm that the adjacency
matrix stays symmetric if we re-label the nodes, i.e. if we apply a permutation on the node numbers:

Lemma 2.10 For an undirected graph G = (V, e) with adjacency matrix A, n := |V |, and a
permutation of node labels σ ∈ Sn, the adjacency matrix Ã of the graph with permuted labels is still
symmetric.

Proof: We use lemma B.23 (p. 87) and lemma B.22 (p. 87). The permuted adjacency matrix
is given by PTσ APσ, and because the permutation matrix Pσ is orthogonal, this also means that
Ã = P−1

σ APσ, so Ã and A are similar via an orthogonal matrix (cf. corollary A.29, p. 79). This
means that the similar matrix Ã is also symmetric, because A is. �

(This is just a technical reassurance, because since re-labeling the nodes does not change the
fact that we are considering a graph, the relabeled graph is a bona fide undirected graph as well,
and thus its adjacency matrix must of course be symmetric.)

Node Degrees and Regular Graphs

We recall the definition 2.1 of a node’s degree via its half-edges (p. 9), and our observations in
corollary 2.5 (p. 11), and give an alternative definition of node degree via the adjacency matrix:

Definition 2.11 For a node j ∈ V of an undirected graph G = (V, e), the degree of j is defined
per

deg(j) :=
∑
k∈V

e(j, k) =
∑
k∈V

e(k, j).

If A is the adjacency matrix of G, this means

deg(j) =
∑
k∈V

Ajk =
∑
k∈V

Akj .

Thus, the degree of a node j is just the sum of all the components in the adjacency matrix’s
j-th row (or column).

We observe that in our example G1 (see above), there are several degrees: Nodes 1, 3 and 5
have degree 1, node 4 has degree 2, node 2 has degree 3, and node 6 has zero degree. In G2, all
nodes have degree 4. In fact, this makes G2 a 4-regular graph:

Definition 2.12 An undirected (multi-)graph G = (V, e) is called regular with degree d, or d-
regular, if all its nodes have degree d.

(More on regular graphs to follow in the next section.)

Connected Components

Both of the above example graphs share another characteristic: they each consist of two connected
components. In order to back this statement up formally, we introduce the notion of indirect
connectedness:

Definition 2.13 For an undirected graph G = (V, e), two nodes j, k ∈ V , j 6= k, are called
indirectly connected if there is a path

j = r1 − r2 − · · · − rm = k

13



such that e(rp, rp+1) 6= 0 for all p ∈ {1, · · · , (m− 1)}; i.e. if one can find edges to travel between j
and k.

In addition, any node j ∈ V is indirectly connected to itself.

Lemma 2.14 The indirect connectedness is an equivalence relation.

Proof: The relation is reflexive because any node is (by definition) indirectly connected to itself. It
is symmetric because the graph is undirected. If a node k can be reached from j, traveling along
edges all the way, then, j can also be reached (along the same route) from k. The relation is also
transitive because if j is indirectly connected to r, and r to k, then any path from j to r can be
extended by a path from r to k to yield a path from j to k. �

Definition 2.15 For an undirected graph G = (V, e), its connected components are the equivalence
classes of nodes under the relation of indirect connectedness.

If G has exactly one connected component, it is called connected; otherwise, it is called discon-
nected.

For both our two examples, those equivalence classes are the sets {1, 2, 3, 4, 5} and {6}, respec-
tively.

Graph Coloring

For the purpose of the main chapter on expander graphs, we will also need the notion of edge
coloring :

Definition 2.16 An undirected graph G = (V, e) is called k-edge-colorable (with k ∈ N) if any
edge can be colored in one of k colors such that no node is incident with two or more half-edges of
the same color.

Corollary 2.17 A k-edge-colorable graph contains no loops.

Proof: A loop edge connects two half-edges of a single node – both of which would have to be of
the same edge color, and thus violate definition 2.16. �

Corollary 2.18 An edge-colorable d-regular graph cannot be less than d-edge-colorable.

Proof: Any node such a graph is incident with d edges, none of which are loops. We need at least
d different colors to distinguish between the incident edges. �

Also, instead of (or in addition to) coloring the edges, we may color a graph’s nodes:

Definition 2.19 An undirected graph G = (V, e) is called k-(vertex/node-)colorable (with k ∈ N)
if any node can be colored in one of k colors such that no two nodes of the same color are connected
by an edge.

We call 2-colorable graphs bipartite.

Corollary 2.20 A k-colorable graph contains no loops.

Proof: A loop connects a node to itself. �

Corollary 2.21 A simple graph G = (V, e), n := |V |, is always n-colorable.

Proof: G is simple, and therefore loop-free (cf. corollary 2.7, p. 12). Regardless of any edges, we
may assign an individual color to any of its n nodes. �

2.1.2 The Graph Spectrum

We recall from corollary 2.9 (p. 12) that undirected graphs have symmetric adjacency matrices.
The Spectrum of A, i.e. the set of eigenvalues, therefore is made up entirely of real numbers (cf.
lemma C.9, p. 102). We will use this fact later in the main construction chapter 3, but we can
observe already that this will enable us to order all the eigenvalues with respect to their size (this
would not be possible if there were eigenvalues with non-zero imaginary parts):

Before we calculate the spectra of our two example graphs, we state an important fact (that is
developed in the appendix):
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Lemma 2.22 Two graphs that differ only by a permutation of node numbers share the same spec-
trum of eigenvalues (“they are co-spectral”).

Proof: We already pointed out above (lemma 2.10, p. 13) that graphs with permuted labels have
similar adjacency matrices. But then, lemma C.8 (p. 102) states that both matrices will also have
the same spectrum of eigenvalues. Thus, the spectrum is truly a property of the connectivity of a
graph. �

We would also like to recall that all eigenspaces of a symmetric matrix are orthogonal on each
other (and all eigenspaces can have a full orthogonal basis), as per corollary C.11 and theorem C.10
(pp. 103, 102, respectively). We will exploit this orthogonality in the coming section 2.2 on regular
graphs.

A Particular Determinant

In preparation for several eigenvalue calculations, we now prove a general formula for the determi-
nant of a certain matrix. After that, we revisit our two example graphs.

Lemma 2.23 For n ∈ N and a, b ∈ R, the matrix Mn ∈ Rn×n with diagonal elements a and
off-diagonal elements b (everywhere), i.e.,

(Mn)jk =

{
a, j = k

b, otherwise

has determinant

detMn = det



a b · · · · · · b

b
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . b

b · · · · · · b a


= (a− b)n−1 · [a+ (n− 1)b]

Proof: First, we observe that every row of Mn contains one component a and (n − 1) elements b
(this is true for the degenerate case n = 1, too). We therefore add columns 2, · · · , n to the first
column, which will not change the determinant (according to corollary B.26, p. 88). This sums up
all the components of each row in the first column:

detMn = det



[a+ (n− 1)b] b · · · · · · b
... a

. . .
...

... b
. . .

. . .
...

...
...

. . .
. . . b

[a+ (n− 1)b] b · · · b a


Now, if the first column of that matrix were zero, then the whole determinant would vanish,

according to corollary B.32 (p. 89), which is in agreement with our statement, where the square
bracket expression appears as a factor. In any case, we may use corollary B.25 (p. 88) to extract
the factor and leave a column consisting of ones in index 1:

detMn = [a+ (n− 1)b] · det



1 b · · · · · · b
... a

. . .
...

... b
. . .

. . .
...

...
...

. . .
. . . b

1 b · · · b a


In the next step, we use corollary B.26 again and add that column, scaled with (−b) to all the

other columns. This eliminates all off-diagonal components b, and leaves (n− 1) terms (a− b) on
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the diagonal.

detMn = [a+ (n− 1)b] · det



1 0 · · · · · · 0
... (a− b)

. . .
...

... 0
. . .

. . .
...

...
...

. . .
. . . 0

1 0 · · · 0 (a− b)


(If b were zero, the last step would have amounted to no change, but the matrix would have looked
like this after the previous step already.)

This remaining matrix is lower-triangular, and we can use lemma B.35 (p. 90) to calculate its
determinant as the product of all its diagonal elements, which is just (a − b)n−1. Together with
the factor in square brackets, this yields the expression in the statement. �

We now proceed to calculate our example spectra.

Spectrum of G1

According to corollary C.3 (p. 100), we have to solve the equation det(A(G1)− λ16) = 0 for λ:

0 = det


−λ 1 0 0 0 0
1 −λ 1 1 0 0
0 1 −λ 0 0 0
0 1 0 −λ 1 0
0 0 0 1 −λ 0
0 0 0 0 0 −λ

 = (−λ) det


−λ 1 0 0 0
1 −λ 1 1 0
0 1 −λ 0 0
0 1 0 −λ 1
0 0 0 1 −λ

 ,

where we used Laplace’s expansion along column 6 in the second equality. We now expand along
the first column:

· · · = (−λ)

(−λ) det


−λ 1 1 0
1 −λ 0 0
1 0 −λ 1
0 0 1 −λ

− det


1 0 0 0
1 −λ 0 0
1 0 −λ 1
0 0 1 −λ




In the right-hand matrix, we can expand along the first row, to get a single non-zero contribution
from a 3× 3 matrix. This latter matrix is block-diagonal, and as per lemma B.48 (p. 98), we may
calculate its determinant as a product of determinants of the two blocks, of which one is just (−λ).
The other block is two by two, which we cover as an example after the proof of theorem B.42
(p. 95); thus, the right-hand 4× 4 determinant from above is (−λ)(λ2 − 1).

We expand the left-hand 4× 4 determinant along its fourth column and get as overall result:

· · · = (−λ)

(−λ)

−det

 −λ 1 1
1 −λ 0
0 0 1

+ (−λ) det

 −λ 1 1
1 −λ 0
1 0 −λ

− [(−λ)(λ2 − 1)
]

Both remaining determinants can be expanded along the third row; this yields (λ2 − 1) for the
left-hand one and λ+ (−λ)(λ2 − 1) for the right-hand one. In total:

0 = (−λ)
[
(−λ)

(
−(λ2 − 1)− λ(λ− λ(λ2 − 1))

)
−
[
(−λ)(λ2 − 1)

]]
We can factor out another (−λ) to get:

0 = (−λ)2
[
−(λ2 − 1)− λ(λ− λ(λ2 − 1))− (λ2 − 1)

]
= λ2

[
−λ2 + λ2(λ2 − 1)− 2(λ2 − 1)

]
We collect the terms in the square brackets:

0 = λ2
[
λ4 − 4λ2 + 2

]
⇔ λ2 = 0 ∨

[
(λ2)2 − 4(λ2) + 2

]
= 0

The second equation has the solutions λ2 = 2±
√

2.
Thus, the (ordered) spectrum of G1 is:

−
√

2 +
√

2, −
√

2−
√

2, 0, 0,

√
2−
√

2,

√
2 +
√

2
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Spectrum of G2

We solve det(A(G2)− λ16) = 0 for λ:

0 = det


−λ 2 2 0 0 0
2 −λ 1 1 0 0
2 1 −λ 1 0 0
0 1 1 −λ 2 0
0 0 0 2 2− λ 0
0 0 0 0 0 4− λ

 = (4− λ) det


−λ 2 2 0 0
2 −λ 1 1 0
2 1 −λ 1 0
0 1 1 −λ 2
0 0 0 2 2− λ

 ,

where we again expanded along the sixth column. This was possible because node 6 is (as in G1)
isolated from the rest of the graph – we will elaborate on that after this calculation, and again in
the coming section on regular graphs.

We now employ another technique that is possible for regular graphs (which we will formally
validate in section 2.2, too). Since every node in a d-regular graph has degree d, all the rows (and
columns) sum up to d. In the determinant for the eigenvalue problem, the corresponding sum also
contains a negative λ and therefore equals (d − λ). Thus, if we add columns 1 to 4 to the fifth
one, we get a value of (4 − λ) for every one of its components, and can extract this factor as per
corollary B.25 (p. 88):

· · · = (4− λ) det


−λ 2 2 0 4− λ
2 −λ 1 1 4− λ
2 1 −λ 1 4− λ
0 1 1 −λ 4− λ
0 0 0 2 4− λ

 = (4− λ)2 det


−λ 2 2 0 1
2 −λ 1 1 1
2 1 −λ 1 1
0 1 1 −λ 1
0 0 0 2 1


Before the next expansion, we add row 4 to row 1 (scaled with a factor of (−2)):

· · · = (4− λ)2 det


−λ 0 0 2λ −1
2 −λ 1 1 1
2 1 −λ 1 1
0 1 1 −λ 1
0 0 0 2 1


We expand along the fifth row:

· · · = (4− λ)2

(−2) det


−λ 0 0 −1
2 −λ 1 1
2 1 −λ 1
0 1 1 1

+ det


−λ 0 0 2λ
2 −λ 1 1
2 1 −λ 1
0 1 1 −λ




Both these 4× 4 determinants can be expanded along their respective first rows:

· · · = (4− λ)2

(−2)

(−λ) det

 −λ 1 1
1 −λ 1
1 1 1

+ det

 2 −λ 1
2 1 −λ
0 1 1


+

(−λ) det

 −λ 1 1
1 −λ 1
1 1 −λ

− 2λ det

 2 −λ 1
2 1 −λ
0 1 1


= (4− λ)2

2λ det

 −λ 1 1
1 −λ 1
1 1 1

− 2(λ+ 1) det

 2 −λ 1
2 1 −λ
0 1 1


− λ det

 −λ 1 1
1 −λ 1
1 1 −λ


For the third determinant, we can use our formula 2.23 (p. 15) with a = (−λ) and b = 1 and

obtain: (−λ− 1)2(2− λ) = (λ+ 1)2(2− λ).
In the first determinant, we add the negative of column 3 each of the other two columns; and

in the second, we add the negative of row 3 to each of the other two rows:

0 = (4− λ)2

2λ det

 −(λ+ 1) 0 1
0 −(λ+ 1) 1
0 0 1

− 2(λ+ 1) det

 2 −(λ+ 1) 0
2 0 −(λ+ 1)
0 1 1


−(4− λ)2

[
λ(λ+ 1)2(2− λ)

]
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The first of these determinants evaluates to (λ + 1)2 (upper triangular matrix). The second
determinant can be expanded along its first column; this yields 4(λ+ 1). Thus, we have:

0 = (4− λ)2
[
(2λ)(λ+ 1)2 − 8(λ+ 1)2 − λ(λ+ 1)2(2− λ)

]
= (4− λ)2(λ+ 1)2 [(2λ)− 8− λ(2− λ)]

= (4− λ)2(λ+ 1)2
[
λ2 − 8

]
,

and the spectrum of G2 therefore is:

−2
√

2, −1, −1, 2
√

2, 4, 4

Graphs with Several Connected Components

Before we expand on regular graphs, we would like to point out one aspect that applies to all
undirected graphs, whether regular or not:

Claim 2.24 If an undirected graph G = (V, e) has k connected components, its spectrum may be
calculated separately for each of those components. The overall spectrum is the combination of the
k sub-spectra.

Proof: We recall definition 2.15 (p. 14). Since the spectrum of G is invariant under re-labeling
of the nodes (cf. lemma 2.22, p. 15), we may choose a labeling where each connected component
corresponds to a contiguous slice of the numbers {1, · · · , |V |}. This implies an ordering of the
components (e.g. by their smallest node label), such that component 1 has node labels {1, · · · , j1},
component 2 has {(j1 +1), · · · , j2}, etc., and component k has {(jk−1 +1), · · · , jk}, where jk = |V |.

Since there are no edges connecting different connected components of G, the edge function e
can only yield non-zero values if both its arguments belong to the same slice of node labels. But this
implies that the adjacency matrix A(G) is block-diagonal; and the same holds for (A(G)− λ1n).

Taking the determinant of the latter matrix (i.e. solving the eigenvalue problem for A(G)), we
may use lemma B.48 (p. 98) recursively, and find that the determinant equals the product of all
the determinants of the diagonal blocks. This means that the characteristic polynomial of A(G)
separates into the k polynomial factors obtained from the block matrices. Therefore it is irrelevant
if we solve for the roots of the combined polynomial or if we combine the roots of the separate k
polynomials. �

(This is no real surprise, because each of the connected components of G may also be viewed
as a separate graph itself – apart from labeling concerns, this is just a matter of perspective.)
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2.2 Regular Graphs

Before we give some further examples of regular graphs (cf. definition 2.12, p. 13) in the next section,
we establish some general characteristics, including their spectra, and introduce the notion of edge
expanders.

2.2.1 Basic Properties of Regular Graphs

First, we show a few example graphs (without node labels) for some values for d.

Figure 2.7: Regular graphs with d = 0 (left) and d = 1 (right)

Figure 2.7 shows that 0-regular graphs are just isolated nodes. 1-regular graphs must consist
of pairs of nodes connected by one edge each (every node must be connected to one other node,
but to none other beyond that).

Figure 2.8 demonstrates that 2-regular graphs may be isolated nodes with loops, pairs connected
with double edges, or closed cycles like polygons.

For 3-regular graphs, there are more possibilities. Cycles of nodes may be connected or have
additional spokes. Also, some three-dimensional structures may be constructed. The lower graph
is actually a flattened version of a tetrahedron. Cubes and dodecahedra could be constructed in
this way, too. The figure does not show all possibilities (for instance, pairs of nodes connected
with triple edges are not depicted).

Figure 2.8: Regular graphs with d = 2 (left) and d = 3 (right)

An example for a 4-regular graph was presented above: The example graph G2 (figure 2.6,
p. 13).
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One important feature of regular graphs is their fixed ratio of node and edge counts:

Lemma 2.25 An undirected d-regular graph G = (V, e) with n := |V | nodes has exactly

nd

2

edges.

Proof: Each node is of degree d and therefore has d half-edges, according to definition 2.1 (p. 9).
This makes for n ·d half-edges. In order for G to be a graph, all those must pair up to edges, which
yields the stated number of edges. �.

Corollary 2.26 If a graph G = (V, e) is d-regular for odd d, its node count n := |V | is even.

Proof: This is a special case of corollary 2.3 (p. 11): In a d-regular graph with odd d, all the n
nodes have odd degree; therefore the node count has to be even. �

2.2.2 Intermezzo: Regular Bipartite Graphs

We recall from definition 2.19 (p. 14) that bipartite graphs are 2-colorable. Often, such graphs are
depicted with one part of the nodes (color 1) on the left-hand side, and the other (color 2) on the
right-hand side. In that case, every edge must be between a left-hand and a right-hand node. We
show the complete3 bipartite graph K5,3 (with five nodes of color 1 and three of color 2) as an
example:

1

2

3

4

5

6

7

8

Figure 2.9: The bipartite graph K5,3

We observe that every node on the left-hand side has degree 3, and every node on the right-
hand side degree 5, respectively. This graph is not regular. But we may infer from this example
the following

Lemma 2.27 A bipartite undirected graph G = (V, e), n := |V |, can only be regular if n is even,
and if G has n/2 nodes of each color. If it is d-regular and simple, then d ≤ n/2.

Proof: First, we observe that it is of course possible to construct bipartite graphs with an even
node color distribution that are not regular (e.g. the complete bipartite graph Kd,d, with a single
edge removed).

However, if G is to be d-regular, each node must be incident with exactly d half-edges that
belong to edges connecting it with nodes of the other respective color. If there are j nodes of

3“complete” to be understood in the sense that adding another edge would produce either a bipartite multi-graph,
or destroy its bipartite property by connecting two nodes of the same color
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color 1 and k nodes of color 2, this implies d · j half-edges incident at color-1 nodes, and d · k
half-edges incident at color-2 nodes. Since G is bipartite, any edge must connect a color-1 node
and a color-2 node – but this is only possible if the respective total numbers of half-edges are equal,
i.e. d · j = d · k, which means j = k = n/2.

Also, for a simple bipartite d-regular graph, no more than n/2 edges can be incident at a single
node because there are exactly n/2 nodes of each color and G (being simple) has no multi-edges.
Therefore d ≤ n/2. �

Corollary 2.28 The complete simple bipartite graphs Kd,d (with d nodes of each color) are d-
regular.

Proof: Each of the d color-1 nodes is connected to each of the d color-2 nodes by a single edge. �

We now give a construction for regular simple bipartite graphs:

Lemma 2.29 Let V := {1, · · · , n} for an even n ∈ N, and 0 < d ≤ n/2, then there is a d-regular
simple bipartite graph G = (V, e).

Proof: Let the nodes {1, · · · , n/2} be of color 1, and {n/2 + 1, · · · , n} of color 2, respectively.
Connect each color-1 node j with each of the color-2 nodes {k1(j), · · · , kd(j)}, where

kr(j) :=
[
((j − 1) + (r − 1)) mod

(n
2

)]
+ 1 +

n

2

The subtraction from j shifts the j range to {0, · · · , n/2−1}, which are the residues modulo (n/2).
Then, we add a shift of {0, · · · , d− 1} depending on r. The modulo operation projects the result
back into the j range, so that the square bracket in the above formula amounts to a cyclic shift
(an invertible operation). After that, we add an offset of 1 to re-adjust the label range back to
{1, · · · , n/2}, and add (n/2) to take us to the color-2 range.

In other words, we perform a cyclic shift of the tuple of color-1 nodes (by a distance of r)
and assign the shifted components to the tuple of color-2 nodes. This ensures that every color-1
node will be connected to d different color-2 nodes in a uniform way. Since the above mapping is
invertible, each of the color-2 nodes will also be connected to d color-1 nodes, and the resulting
graph is simple and d-regular. �

As an example, we show the 3-regular construction for 12 nodes (observe the cyclic shift effect
for j = 5 and j = 6):

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.10: A 3-regular bipartite graph with 12 nodes

If we drew the graph on a cylindrical surface, with the color-1 nodes in the lower half and the
color-2 nodes in the upper half, the picture would be translation-symmetric (nodes 6 and 12 would
be next to nodes 5 and 11, respectively, as in the above figure, but also next to nodes 1 and 7).
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Corollary 2.30 The construction in lemma 2.29 is d-edge-colorable.

Proof: Assign edge color r to each edge between j and kr(j). Because of the unified construction,
each color-1 node is then incident with edges colored from 1 to d. Since the construction’s mapping
j 7→ kr(j) is a bijection and could be formulated equivalently in the other direction, each color-2
node is also incident with d edges of pairwise-different edge colors:

• Edge color 1: Between j and j+n/2, or, equivalently, between k−n/2 and k (modulo range
corrections)

• Edge color 2: Between j and j+1+n/2, or, equivalently, between k−1−n/2 and k (modulo
range corrections)

• · · ·

• Edge color d: Between j and j + (d − 1) + n/2, or, equivalently, between k − (d − 1) − n/2
and k (modulo range corrections)

�
We show the different edge colors resulting from the above example:
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Figure 2.11: The previous graph. Edges with colors 1 (left), 2 (middle) and 3 (right)

We would like to point out that the above construction will in no way generate all d-regular
bipartite graphs. In the main chapter 3, we will introduce in section 3.4, a more general way to
build the complete set of d-regular d-edge-colorable bipartite graphs.

2.2.3 Spectral Properties of Regular Graphs

Lemma 2.31 The spectrum of an undirected d-regular graph G = (V, e), n := |V |, always contains
the eigenvalue d; and a vector comprised of n components with value 1, ~v := (1, · · · , 1)T , is an
eigenvector of the adjacency matrix A := A(G) to that eigenvalue.

Proof: Since the graph is d-regular, every node has degree d. As per definition 2.11 (p. 13),
the components of any row of A sum up to d. Consider the equation of the eigenvalue problem
(definition C.1, p. 100) with that vector:

A ·


1
1
· · ·
1

 = λ


1
1
· · ·
1


If we pick the j-th component of the eigenvector, the equation isλ


1
1
· · ·
1



j

= λ =

A ·


1
1
· · ·
1



j

=
∑
k

Ajk




1
1
· · ·
1



k

=
∑
k

Ajk = d �
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Corollary 2.32 The spectrum of an undirected d-regular graph G with k connected components
contains at least k times the eigenvalue d.

Proof: Any connected component of G can be viewed as a separate d-regular graph, whose spec-
trum features an eigenvalue d as per lemma 2.31. Thus, and per claim 2.24 (p. 18), each of the
components contributes an eigenvalue d to the overall spectrum of G. �

Corollary 2.33 If the spectrum of an undirected d-regular graph G contains the eigenvalue d just
once, G is a connected graph.

Proof: If G had more than one connected components, its spectrum would feature the eigenvalue
d at least twice, as per corollary 2.32. �

Next, we follow a proof in [BM11] (p. 44) to demonstrate that the spectrum of a connected
d-regular graph (i.e. a graph with only one connected component) contains the eigenvalue d exactly
once (not more), and that all other eigenvalues are smaller than d. In the above corollary 2.32, the
lower bound k then becomes an upper bound as well, because a d-regular graph with k connected
components cannot have more than k times the eigenvalue d.

Lemma 2.34 If an undirected d-regular graph G = (V, e), n := |V |, with an adjacency matrix
A := A(G), is connected, then d is the largest eigenvalue of A(G), and occurs only once.

Proof: Let λ be an eigenvalue of A and ~v an eigenvector of A for λ. We may assume that ~v scaled
in such a way that its largest component vj (for some j ∈ {1, · · · , n}) equals 1. This is possible
due to corollary C.2 (p. 100).

We now consider the product of row j of A with ~v, remembering that vj = 1, that vk ≤ vj for
all k, and that the sum of any row’s components in A is d, according to definitions 2.11 (p. 13)
and 2.12 (p. 13):

λ = λ · 1 = λ · vj = (A~v)j =
∑
k

Ajkvk ≤
∑
k

Ajkvj =
∑
k

Ajk = d

Thus, any eigenvalue is less or equal to d.
We now recall that A is symmetric, therefore all its eigenspaces are orthogonal according to

corollary C.11 (p. 103), and have full dimension (i.e. an eigenspace features as many linearly
independent eigenvectors as the algebraic multiplicity of its eigenvalue permits).

For our connected graph G, let ~w be an eigenvector of A to the eigenvalue d. As above, we
may scale that vector, so that its largest component wj is 1. But then:

d = d · 1 = d · wj = (A~w)j =
∑
k

Ajkwk ≤
∑
k

Ajkwj =
∑
k

Ajk = d

But since every wk in ~w is at most 1, and none of the components of A is negative, and the sum
of a row’s components in A is exactly d, we can only achieve the “equal” case in “≤” if all the wk
have maximum value, i.e. if they are all 1.

Thus, if ~w is eigenvector to d, it follows that it is a multiple of (1, 1, · · · , 1)T . Thus, the
eigenspace of eigenvalue d must be one-dimensional, and the eigenvalue d can occur only once. �

We combine the results from above:

Corollary 2.35 The adjacency matrix A of a connected undirected d-regular graph G always has
an eigenvalue of d, which occurs exactly once and is the largest eigenvalue of the spectrum.

If we denote the second-largest eigenvalue of a connected d-regular graph G by λ2(G), we can
show the following:

Lemma 2.36 For a connected undirected d-regular graph G = (V, e), n := |V |, with second-largest
eigenvalue λ2 and adjacency matrix A:

λ2 = max
~06=~x⊥(1,··· ,1)T

{
〈A · ~x, ~x〉
〈~x, ~x〉

}
= max
~0 6=~x⊥(1,··· ,1)T

{
~xTA~x

~xT~x

}
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Proof: Since A is a symmetric matrix, there is (as per theorem C.10 (p. 102)) an orthogonal basis
of Rn consisting of n eigenvectors. We may assume that all those vectors ~v1, · · · , ~vn are normalized,
so 〈~vj , ~vk〉 = δjk. Further, let ~v1 := (1, · · · , 1)T /

√
n and let the spectrum be ordered per

λn ≤ · · · ≤ λ2 < λ1 = d

Since the ~v vectors constitute an orthonormal basis, we may project any vector ~x onto those
vectors to determine its components:

~x =
∑
j

xj~vj

If we consider the two scalar products in the quotient, we observe that the quotient is independent
of ~x’s length, so we may also assume that

||~x|| =
√∑

j

x2
j = 1

We now calculate the quotient:

〈A · ~x, ~x〉
〈~x, ~x〉

=
~xTAT~x

||~x||2
= ~xTA~x =

∑
j

xj~v
T
j ·A ·

∑
k

xk~vk =
∑
j,k

xjxk~v
T
j ·A · ~vk

~vk is an eigenvector of A to the eigenvalue λk:

· · · =
∑
j,k

xjxkλk~v
T
j · ~vk =

∑
j,k

xjxkλk〈~vj , ~vk〉 =
∑
j,k

xjxkλkδjk =
∑
j

λjx
2
j

Now, if we only consider vectors ~x ⊥ ~v1, then x1 = 0, because the ~v basis is orthogonal. Also, all
other eigenvalues λj are bounded by λ2:

· · · =
n∑
j=2

λjx
2
j ≤ λ2

n∑
j=2

x2
j = λ2

Thus, the quotient cannot exceed the value λ2 – but it can reach it: If we consider the vector
~x := ~v2, then x2 = 1 and all other xj are zero, so that the quotient is exactly λ2. Thus, the
maximum of quotient values is indeed λ2, the second-largest eigenvalue of A. �

2.2.4 Edge Expanders (Definition)

Expander graphs are characterized by high connectivity: Cutting such graphs into two parts (in
any way) requires the deletion of a number of edges – the more edges, the better the “expansion”.
In preparation of the construction algorithm [ASS08], we introduce a quantity that is variously
known as “Edge Expansion”, “Cheeger Constant” or “Isoperimetric Constant”, depending on the
source. It is called “Expansion Parameter” in [Sta17]. Because Alon et al. reserve the term
“edge expansion” (see below) for a normalized version of this quantity, we will introduce it as
“isoperimetric constant”:

Definition 2.37 For an undirected graph G = (V, e), n := |V |, the Isoperimetric Constant I(G)
is defined per

I(G) := min
S⊂V

0<|S|≤n
2

{
e(S, S̄)

|S|

}
,

where S̄ := V \ S is the complement of the subset S, and e(S, S̄) is the number of edges between S
and S̄, i.e. the number of all the edges connecting one node in S with one node in S̄.

The isoperimetric constant can be calculated for any undirected graphs, not only for regular
ones. We avoided mentioning it in the basics section because we will mainly use it in its relation
to expander graphs. The next section will feature several example graphs, for which we have
calculated the value of I with a simple Java program (cf. chapter F, p. 117, for details).

Corollary 2.38 The isoperimetric constant of a given graph G = (V, e) is zero if and only if G is
not connected.
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Proof: If G is not connected, it contains at least two disjoint connected components (cf. defini-
tion 2.15, p. 14, for details). Let one of those be the subset S ⊂ V . Then, S̄ = V \ S contains all
the other connected components of G, none of which can be reached from S by traversing an edge:
e(S, S̄) = 0.

If G is connected, then, per definition 2.13 (p. 13), all its nodes are indirectly connected to each
other, and any subset of nodes will be connected to its complement by at least one edge. Since
all the fractions in definition 2.37 therefore are positive (zero cannot be reached), the minimum of
those fractions must be nonzero, too. �

Corollary 2.39 For an undirected graph G = (V, e), the isoperimetric constant I(G) satisfies

I(G) ≤ max
j∈V
{deg(j)}

If G is d-regular, then I(G) ≤ d.

Proof: The fractions in definition 2.37 are largest if all the edges of a subset S of nodes are con-
nected to its complement. This edge count cannot be more than the sum of node degrees (cf.
definition 2.11, p. 13), which is at most |S| times the maximum node degree. �

We will now restrict ourselves to regular graphs again, and introduce the notation used in [ASS08]:

Definition 2.40 An undirected d-regular Graph G = (V, e), n := |V |, is called a δ-Edge-Expander,
denoted as an [n, d, δ]-Expander, where

δ :=
I(G)

d

Corollary 2.41 For an [n, d, δ]-expander, the expansion δ satisfies 0 ≤ δ ≤ 1.

Proof: This follows directly from the normalization in definition 2.40 and the corollaries 2.38
and 2.39. �

2.3 Examples of Regular Graphs

We will first look at a popular cubic (i.e. 3-regular) graph devised by J. Petersen (cf. [Sta17],
p. 21), which has comparatively good expander properties, and a contrasting example with poor
expansion. After that, we present some complete, and some bipartite graphs. All graphs in this
section will be regular, i.e. their nodes all have equal degree.

In this section, we will denote the adjacency matrices with M instead of A, because the letters
A do D will be needed several times for sub-matrices.

2.3.1 The Petersen Graph

This is a cubic graph (d = 3) with ten nodes. As per lemma 2.25 (p. 20), it has 3 ·10/2 = 15 edges;
see figure 2.12:
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Figure 2.12: The Petersen graph
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The corresponding adjacency matrix (written as a table) is:

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 1 1 0 0 0 0
2 1 0 1 0 0 0 1 0 0 0
3 0 1 0 1 0 0 0 1 0 0
4 0 0 1 0 1 0 0 0 1 0
5 1 0 0 1 0 0 0 0 0 1
6 1 0 0 0 0 0 0 1 1 0
7 0 1 0 0 0 0 0 0 1 1
8 0 0 1 0 0 1 0 0 0 1
9 0 0 0 1 0 1 1 0 0 0

10 0 0 0 0 1 0 1 1 0 0

Table 2.1: Adjacencies of the Petersen graph

We calculate the spectrum of M , i.e. we solve 0
!
= det(M −λ110) =: detMλ. Instead of solving

directly, using ten-dimensional Laplace expansion, we exploit the high degree of symmetry in M ,
which was already hinted at by the table lines:

M =

(
A B
C D

)
, with B = C = 15

We employ a formula by J. Silvester [Sil00] (theorem 3): If M is an (2n)× (2n) matrix with n× n
blocks A,B,C,D as written above, and if CD = DC (i.e. C,D commute, as per definition A.24,
p. 76), then detM = det(AD − BC). Since the unit matrix C = 15 certainly commutes with
D, the formula applies. This still holds if we deduct λ110: Mλ has similar block structure with
matrices Aλ and Dλ, but B,C unchanged. Thus, detMλ = det(AλDλ − 15), because BC = 15.

We calculate the other matrix product:

AλDλ =


−λ 1 0 0 1
1 −λ 1 0 0
0 1 −λ 1 0
0 0 1 −λ 1
1 0 0 1 −λ

 ·

−λ 0 1 1 0
0 −λ 0 1 1
1 0 −λ 0 1
1 1 0 −λ 0
0 1 1 0 −λ



=


λ2 1− λ 1− λ 1− λ 1− λ

1− λ λ2 1− λ 1− λ 1− λ
1− λ 1− λ λ2 1− λ 1− λ
1− λ 1− λ 1− λ λ2 1− λ
1− λ 1− λ 1− λ 1− λ λ2


This means that we can use the formula from lemma 2.23 (p. 15). Subtracting 15 from the

above, we obtain the a, b pattern with a = (λ2 − 1) and b = (1 − λ). Together with n = 5, this
yields

0 = detMλ = (a− b)4 · [a+ 4b]

We determine the expressions in brackets:

a− b = λ2 + λ− 2 = (λ− 1)(λ+ 2)

a+ 4b = λ2 − 4λ+ 3 = (λ− 1)(λ− 3)

And thus
0 = (λ− 1)5(λ+ 2)4(λ− 3),

yielding a spectrum of
−2, −2, −2, −2, 1, 1, 1, 1, 1, 3

The algorithm presented in chapter F returns an isoperimetric constant (cf. definition 2.37,
p. 24) of 1: the inner set of nodes {6, · · · , 10} is connected to the outer set {1, · · · , 5} by five
edges, hence the quotient. Because the Petersen graph is cubic, this means that, according to
definition 2.40 (p. 25), it is a [10, 3, (1/3)]-expander.
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2.3.2 An Example with Poor Expansion

The following graph also has ten nodes and is cubic, but has decidedly poorer expansion. In keeping
with the numbering of the examples in section 2.1, we will call this example G3; see figure 2.13:
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Figure 2.13: Example graph G3

The adjacency table (again, suggestively spaced in anticipation of the spectrum calculation) is
as follows:

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 1 0 0 1 0 0
2 1 0 1 1 0 0 0 0 0 0
3 0 1 0 2 0 0 0 0 0 0
4 0 1 2 0 0 0 0 0 0 0
5 1 0 0 0 0 1 1 0 0 0
6 0 0 0 0 1 0 2 0 0 0
7 0 0 0 0 1 2 0 0 0 0
8 1 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 1 0 2

10 0 0 0 0 0 0 0 1 2 0

Table 2.2: Adjacencies of the Example graph G3

This graph’s adjacency matrix M does not exhibit a block structure suitable for Sylvester’s
theorem, but the three-fold symmetry is clearly visible: If we deleted the edges incident at node 1,
we would have three pairwise-disconnected graphs with identical structure; thus, M is almost block-
diagonal. We will use the shorthand A for the 3 × 3 blocks on the diagonal, and Aλ := A − λ13

like in the previous example. Also, we define ~e := (1, 0, 0)T ; thus

Mλ =


−λ ~eT ~eT ~eT

~e Aλ 0 0
~e 0 Aλ 0
~e 0 0 Aλ


For the determinant calculation, we first add the third and fourth block-columns to the second

one (each block addition consisting of three proper matrix column additions). After that, we add
the second block row, scaled with (−1) to the third and fourth:

0 = detMλ = det


−λ 3~eT ~eT ~eT

~e Aλ 0 0
~e Aλ Aλ 0
~e Aλ 0 Aλ

 = det


−λ 3~eT ~eT ~eT

~e Aλ 0 0
0 0 Aλ 0
0 0 0 Aλ
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This matrix has block-upper-triangular form, and we can use lemma B.48 (p. 98) to reduce its
determinant to a threefold product:

· · · = det

(
−λ 3~eT

~e Aλ

)
· (detAλ) · (detAλ)

We expand the left-hand matrix along the first column to yield the expression in square brackets:

· · · = (detAλ)2 ·

(−λ)(detAλ)− det

 3 0 0
1 −λ 2
1 2 −λ


This leaves us with just two 3 × 3 determinants to calculate. Starting with the one expressed

directly in the last equality, and expanding it along the first row, we obtain a contribution of

3(λ2 − 4) = 3(λ+ 2)(λ− 2)

For Aλ, we may employ Sarrus’s rule (cf. the example in figure B.1, p. 94) after the proof of
Leibniz’s rule (theorem B.40, pp. 92ff). This yields:

detAλ = det

 −λ 1 1
1 −λ 2
1 2 −λ

 = (−λ)3 + 2 + 2− (−λ)− (−λ)− (−4λ) = −λ3 + 6λ+ 4

In order to simplify the square bracket expression from above, it would be beneficial if detAλ
had a root of ±2; and indeed we find that (−2) is a root of detAλ. Employing polynomial division
(cf. lemma E.9, p. 108), we may split off the factor belonging to this root:

detAλ = −(λ+ 2)(λ2 − 2λ− 2)

Thus, our expression for detMλ simplifies to

· · · = (λ+2)3(λ2−2λ−2)2
[
λ(λ2 − 2λ− 2)− 3(λ− 2)

]
= (λ+2)3(λ2−2λ−2)2

[
λ3 − 2λ2 − 5λ+ 6

]
For the square bracket term, we may use the fact that G3 is 3-regular, and therefore the

characteristic polynomial must have a λ = d = 3; this does not feature in the factors outside
the square bracket, so the corresponding factor must divide the square bracket. Using polynomial
division again, we obtain

λ3 − 2λ2 − 5λ+ 6 = (λ− 3)(λ2 + λ− 2) = (λ− 3)(λ− 1)(λ+ 2)

We combine the previous results:

0 = (λ+ 2)4(λ2 − 2λ− 2)2(λ− 3)(λ− 1)

The resulting spectrum, then, is

−2, −2, −2, −2, 1−
√

3, 1−
√

3, 1, 1 +
√

3, 1 +
√

3, 3

The algorithm in chapter F returns an isoperimetric constant of (1/3): If we cut through the
(single) edge between nodes 1 and 2, we have separated a set of three nodes from the rest of G3.
According to definition 2.40 (p. 25), this makes G3 a [10, 3, (1/9)]-expander, with only a third of
the expansion of the Petersen graph from the previous subsection.

Generally speaking, having large node clusters with only a few bridging connections among
each other will produce a poor expansion because it will only take a few edges to cut in order to
separate the connected graph into two components.
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2.3.3 Complete Graphs

Complete graphs Kn (n ∈ N, n > 1) are simple graphs where each node is connected to every of
the respective other (n− 1) nodes, making Kn (n− 1)-regular. We show an example for n = 9 in
figure 2.14:
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Figure 2.14: The complete graph K9

The adjacency matrix of Kn has zeros on its diagonal, and all off-diagonal components are 1.
For the spectrum, we may therefore employ the formula in lemma 2.23 (p. 15), with a = (−λ) and
b = 1:

0 = detMλ = (−λ− 1)n−1 · [−λ+ (n− 1)] = (−1)n−1 · (λ+ 1)n−1[(n− 1)− λ]

Thus, the spectrum consists of (n − 1) times the eigenvalue (−1), and a single eigenvalue of
d = (n− 1).

For the isoperimetric constant we refer to B. Mohar’s article [Moh89], where he states that

I(Kn) =
⌈n

2

⌉
,

which we could verify for some small values for n with our Java algorithm from chapter F.
Because of the high degree of symmetry, it is not hard to find a subset of nodes that reaches

this minimum ratio of outer edge count to subset node count (cf. definition 2.37, p. 24):

• For even n, take n/2 nodes to form S. The complement S̄ will contain n/2 nodes, too. Now,
each of the nodes in S will have an edge connecting it to any node in S̄; this makes for (n/2)2

edges. If we divide this by |S|, we obtain n/2.

The expansion as per definition 2.40 (p. 25) is

δ =
n

2(n− 1)
=

1

2− 2
n

• For odd n, take (n− 1)/2 nodes to form S. The complement S̄ will contain (n+ 1)/2 nodes.
By the same reasoning, this makes for (n− 1)(n+ 1)/4 edges between S and S̄, which yields
(n+ 1)/2 if divided by |S|.
The expansion evaluates to

δ =
n+ 1

2(n− 1)
=

1

2− 2
n+1
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On the face of it, this looks “better” than the Petersen graph for large enough n, and it cannot
be denied that a sizable number of edges has to be cut in order to divide Kn into two components
– but the Kn also have maximum degree for a simple graph, which does not fit the aim of sparse
expanders.

In fact, Alon et al. argue[ASS08] that constant degree expanders (i.e. with fixed d) are prefer-
able.

2.3.4 Complete Regular Bipartite Graphs

We already determined in lemma 2.27 (p. 20) that any bipartite graph that is also regular has an
even number of nodes, with half the nodes of color 1, and the other half of color 2. We also stated
in corollary 2.28 (p. 21) that the complete bipartite graphs Kd,d are d-regular. As an example, we
show the graph K5,5 in figure 2.15:
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Figure 2.15: The complete regular bipartite graph K5,5

For the spectrum, we observe that the adjacency matrix M and the eigenvalue matrix Mλ have
block structure:

Mλ =

(
−λ1d 1

1 −λ1d

)
=:

(
Aλ B
C Dλ

)
,

where B and C are d × d-matrices consisting entirely of 1. The matrices C and Dλ commute
because

CDλ = −λC1d = −λ1dC = DλC

This means we may employ Silvester’s formula (theorem 3 in [Sil00]) again (as we did with the
Petersen graph), and obtain detMλ = det(AλDλ −BC).

Now, AλDλ is just λ21d, and BC is d·B, d times a matrix consisting only of 1. Thus, AλDλ−BC
is a matrix with a := (λ2 − d) for its diagonal components; all the off-diagonal components are
b := (−d). We can calculate this determinant with our formula from lemma 2.23 (p. 15), with a
and b as specified just now. This yields:

0 = detMλ = ((λ2 − d)− (−d))d−1 · [(λ2 − d) + (d− 1)(−d)] = (λ2)d−1 · [λ2 − d2]

Thus, the spectrum of Kd,d consists of (2d− 2) zeros and the values ±d.
(It is no coincidence that the spectrum is symmetric. Stanic [Sta17] (pp. 13f.) proves that any

bipartite graph will have a symmetric spectrum of its adjacency matrix.
In the special case of bipartite regular graphs, we may always use Silvester’s determinant

formula and end up with a matrix with λ2 on its diagonal elements, and has the form of an
eigenvalue problem for eigenvalues µ := λ2. Solving the characteristic polynomial for µ (all of
whose roots will be non-negative) will always yield symmetric eigenvalues λ = ±µ.)

As for the isoperimetric constant, Mohar [Moh89] states that

I(Kd,d) =

{
d2

2d , for even d
d2+1

2d , for odd d
,

which makes for expansion values δ of exactly 1/2 or ((1/2) + 1/(2d2)), respectively.
We verified the isoperimetric constants for some small values of d with our Java algorithm F:

• For even d, take a subset consisting of half the nodes of each color, so |S| = d. Each of those
nodes will have (d/2) external edges leading to S̄, making for e(S, S̄) = d2/2.
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• For odd d, take (d− 1)/2 nodes of one color (say, color 1) and (d+ 1)/2 of the other (here,
color 2). Then, the color-1 nodes in S will have external edges to the (d− 1)/2 color-2 nodes
belonging to S̄, and the color-2 nodes in S, edges to the (d+ 1)/2 color-1 nodes. Thus, the
edge count between S and S̄ is:

e(S, S̄) =

(
d− 1

2

)2

+

(
d+ 1

2

)2

=
1

4
[d2 − 2d+ 1 + d2 + 2d+ 1] =

1

2
(d2 + 1)

The subset size is d, like in the even d case.

Again, as for the complete graphs, the expansion looks promising at first, but the node degrees
are manifestly linear in the overall node count, and like the complete graphs from above, the com-
plete regular bipartite graphs are not sparse, as can be apprehended from figure 2.15 already.

This concludes our general introduction to (regular) graphs, adjacency matrix spectra and edge
expanders; we now proceed with the construction proofs from [ASS08] by Alon et al.
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Chapter 3

Construction of Constant-Degree
Edge Expanders

The article [ASS08] by N. Alon, O. Schwartz and A. Shapira describes how a class of large edge
expanders with fixed degree (i.e. independent of the node count) may be constructed, and provides
proofs for the most important concepts involved. Those include observations on the spectral gap of
expander graphs, a special kind of product between graphs (particularly, its application in products
of expanders), and a class of easily constructible expanders with non-constant degree that will later
occur as factors in such products.

We will explore all those topics in preparation for the main construction section 3.6 (pp. 60ff.),
and conclude with a small section containing specializations of the main construction.

3.1 About the Spectral Gap

We follow a proof from [ASS08] (theorem 1) to show an important result combining the spectral
gap, i.e. the difference between the largest and second-largest eigenvalues, with its edge expansion
δ (which is directly related to the isoperimetric constant, see definitions 2.37 (p. 24) and 2.40
(p. 25)).

Theorem 3.1 For any undirected d-regular graph G with expansion δ and largest eigenvalues (of
its adjacency matrix A(G)) λ1 := d and λ2:

δ ≥ 1

2

(
1− λ2

d

)
=

1

2

d− λ2

d
=

1

2

λ1 − λ2

d

First, we observe that this is in accordance with corollary 2.38 (p. 24) about disconnected
graphs. If G is disconnected, it will have I(G) = 0, and also, because of corollary 2.35 (p. 23), the
eigenvalue d occurs at least twice – therefore λ2 = λ1 = d, and the expression on the right-hand
side of the statement is zero.

Secondly, we may readily multiply the inequality with d > 0, to yield an equivalent statement:

I(G) ≥ 1

2
(d− λ2)

Before we commence the proof, we consider the spectral gaps and expansion values for our
examples in section 2.3 (pp. 25ff.).

• For the Petersen graph, I(G) = 1, d = 3 and λ2 = 1; thus, (d− λ2)/2 = 2/2 = 1 ≤ 1. X

• For the poor expansion example G3, I(G) = 1/3, d = 3 and λ2 = 1 +
√

3. The right-hand
expression here evaluates to (d− λ2)/2 = (2−

√
3)/2 ≈ 0.134 ≤ 1/3 X

• For the complete graphs Kn, I(G) = dn/2e, d = (n− 1) and λ2 = (−1). Thus,

d− λ2

2
=
n

2
≤
⌈n

2

⌉
X

• For the complete bipartite graphs Kd,d with d > 1, I(G) ≥ d/2 (depending on even or odd
d), and λ2 = 0. Thus, (d− λ2)/2 = d/2 ≤ I(G) X
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3.1.1 Partition Vectors

We recall that, since G = (V, e) is d-regular, the largest eigenvalue λ1 is d, and ~v1 := (1, · · · , 1)T

is an associated eigenvector, as per lemma 2.31 (p. 22) and lemma 2.34 (p. 23).
In preparation of the proof, we examine the behavior of certain vectors for a given partition of

the nodes into S and S̄ = V \ S. This will allow us to reason about the inherent inequality stated
in lemma 2.36 (p. 23).

Definition 3.2 For a given partition S ] S̄ = V of a graph G with node set V , define the charac-
teristic vectors ~xS and ~xS̄ via

(~xS)j :=

{
1, j ∈ S
0, j ∈ S̄

(~xS̄)j :=

{
1, j ∈ S̄
0, j ∈ S

Since any node j belongs to either S or S̄, ~xS + ~xS̄ = ~v1 = (1, · · · , 1)T . ~xS contains exactly |S|
non-zero components; ~xS̄ , contains |S̄| such components.

We examine their scalar products among each other, and with the eigenvector ~v1:

〈~xS , ~xS〉 =
∑
j

(~xS)j(~xS)j = |S|

〈~xS̄ , ~xS̄〉 =
∑
j

(~xS̄)j(~xS̄)j = |S̄|

〈~xS , ~xS̄〉 =
∑
j

(~xS)j(~xS̄)j = 0

〈~xS , ~v1〉 =
∑
j

(~xS)j(~v1)j = |S|

〈~xS̄ , ~v1〉 =
∑
j

(~xS̄)j(~v1)j = |S̄|

3.1.2 Additional Edge Counters

If we construct quadratic forms of the adjacency matrix A with the characteristic vectors of the
previous subsection, we obtain certain edge counts. For that, we define

Definition 3.3 For a given partition S ] S̄ = V of an undirected graph G = (V, e), define the
following edge counters:

• Let e(S) the sum of all edges among nodes in S.

• Let e(S̄) the sum of all edges among nodes in S̄.

• Let e(S, S̄) = e(S̄, S) the sum of all edges between nodes in S and nodes in S̄ (like in
definition 2.37, p. 24).

Corollary 3.4 For a given partition S ] S̄ = V of a d-regular graph G = (V, e), |V | = n:

e(S) + e(S̄) + e(S, S̄) =
nd

2
=
d

2
|V | = d

2

(
|S|+ |S̄|

)
Proof: The left-hand expression sums up all the edges of G. Because G is d-regular, this edge
count is nd/2, according to lemma 2.25 (p. 20). �

Now for the advertised quadratic forms:

~xTSA~xS =
∑
j,k

(~xS)jAjk(~xS)k =
∑
j∈S
k∈S

Ajk = 2e(S)

~xTS̄A~xS̄ =
∑
j,k

(~xS̄)jAjk(~xS̄)k =
∑
j∈S̄
k∈S̄

Ajk = 2e(S̄)

~xTSA~xS̄ =
∑
j,k

(~xS)jAjk(~xS̄)k =
∑
j∈S
k∈S̄

Ajk = e(S, S̄)

~xTS̄A~xS =
∑
j,k

(~xS̄)jAjk(~xS)k =
∑
j∈S̄
k∈S

Ajk = e(S̄, S) = e(S, S̄)
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The factors 2 in the first two above equations result from the fact that A is symmetric. If j and
k are taken from the same index sets, every edge will be counted twice. In the third equation, j is
from S and k from S̄, so the symmetric contributions are not counted here. The same argument
applies to the fourth equation.

3.1.3 Combining the Characteristic Vectors

We now examine a special linear combination of the characteristic vectors for a given partition of
V :

~x := |S̄|~xS − |S|~xS̄
Taking its scalar product with the characteristic vectors yields (using the bilinear property of

the real scalar product (cf. definition A.8, p. 69, and subsequent remarks)):

〈~x, ~xS〉 = |S̄|〈~xS , ~xS〉 − |S|〈~xS̄ , ~xS〉 = |S̄||S| − |S| · 0 = |S̄||S|
〈~x, ~xS̄〉 = |S̄|〈~xS , ~xS̄〉 − |S|〈~xS̄ , ~xS̄〉 = |S̄| · 0− |S||S̄| = −|S||S̄|

Therefore:
〈~x,~v1〉 = 〈~x, (~xS + ~xS̄)〉 = 〈~x, ~xS〉+ 〈~x, ~xS̄〉 = 0 ⇔ ~x ⊥ ~v1

We also take the scalar products of ~x with itself, and its quadratic form with the adjacency
matrix A, plugging in the results of the previous two subsections and using n = |V | = |S|+ |S̄|:

〈~x, ~x〉 =
〈
(|S̄|~xS − |S|~xS̄), (|S̄|~xS − |S|~xS̄)

〉
= |S̄|2|S| − 0− 0 + |S|2|S̄| =

(
|S̄|+ |S|

)
|S||S̄|

= n|S||S̄|
~xTA~x =

(
|S̄|~xTS − |S|~xTS̄

)
A
(
|S̄|~xS − |S|~xS̄

)
= |S̄|2~xTSA~xS − |S̄||S|~xTSA~xS̄ − |S||S̄|~xTS̄A~xS + |S|2~xTS̄A~xS̄
= 2|S̄|2e(S)− 2|S||S̄|e(S, S̄) + 2|S|2e(S̄)

We note that these two expressions occur in lemma 2.36 (p. 23), and that ~x is indeed perpen-
dicular to ~v1 = (1, · · · , 1)T . In order for the main argument to work, we have to rewrite ~xTA~x
in a way that hints at the expressions occurring in the definition 2.37 (p. 24) of the isoperimetric
constant:

3.1.4 Rewriting the Edge Counters

We recall corollary 3.4 (p. 33). In fact, we can split this formula along the partition as well and
obtain:

Lemma 3.5 For a given partition S ] S̄ = V of a d-regular graph G = (V, e), |V | = |S|+ |S̄| = n:

e(S) +
1

2
e(S, S̄) =

d|S|
2

e(S̄) +
1

2
e(S, S̄) =

d|S̄|
2

Proof: We first observe that the sum of those two equations yields exactly the contents of corol-
lary 3.4.

Secondly, both sides of the equations may turn out to be half-integers, depending on the selected
subset S, which does not necessarily contain an even number of nodes. This already suggests that
we may proceed by multiplying the stated equations by 2:

2e(S) + e(S, S̄) = d|S| ∧ 2e(S̄) + e(S, S̄) = d|S̄|

In order to show this, we consider a new graph G̃ consisting of two copies of G side by side,
and subsets S1 and S2 that are both equal to the subset S from V within their respective copies
of G, as illustrated in figure 3.1 (p. 35).
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S1 S̄1

G

S2 S̄2

G

G̃

Figure 3.1: Doubled partitioned graph G̃ with partition-crossing edges

Both S1 and S2 each contain e(S) internal edges, and each is connected via e(S, S̄) edges to
their respective complements S̄1 and S̄2.

In S, all purely internal nodes have d edges to other nodes in S. The nodes with edges into S̄
have fewer than d edges connecting to nodes in S, by a total of e(S, S̄).

Now, if we take the doubled graph G̃ and cut open all the partition-crossing edges, (in figure 3.1,
that means cutting along the dotted vertical line), we end up with twice e(S, S̄) half-edges. We
connect every such half-edge in S1 to its counterpart in S2, and do the same for the half-edges in
S̄1 and S̄2, as shown in figure 3.2:

S1 S̄1

S2 S̄2G̃

Figure 3.2: Doubled graph G̃, reconnected

We observe that the reconnected G̃ now consists of two unconnected sub-graphs, one made
up of S1 and S2 (with 2|S| nodes), the other one of S̄1 and S̄2 (with 2|S̄| nodes). Each of those
sub-graphs is d-regular, with the full compliment of internal edges.

Because the sub-graphs are d-regular, their edge counts are (2|S|)d/2 = d|S| and, respectively,
(2|S̄|)d/2 = d|S̄|. But because of the doubling procedure from above, those numbers also equal
2e(S) + e(S, S̄) and 2e(S̄) + e(S, S̄), respectively, by counting the internal edges of the respective
subsets and adding the reconnected edges. This proves the stated equations. �
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3.1.5 Proof of Theorem 3.1

With these preparations, we are now able to prove the main assertion. We begin by restating
lemma 2.36 from p. 23:

λ2 = max
~06=~x⊥(1,··· ,1)T

{
~xTA~x

〈~x, ~x〉

}
Now, for a non-empty subset S of nodes, ~x is not the zero vector, and it is perpendicular to

~v1 (see above). We multiply the above equation and turn it into an inequality by omitting the
maximum operation:

λ2〈~x, ~x〉 ≥ ~xTA~x

We rewrite the right-hand expression by plugging in our formulas from lemma 3.5 (p. 34) into
what we had already determined:

~xTA~x = 2|S̄|2e(S)− 2|S||S̄|e(S, S̄) + 2|S|2e(S̄)

= |S̄|2
(
d|S| − e(S, S̄)

)
− 2|S||S̄|e(S, S̄) + |S|2

(
d|S̄| − e(S, S̄)

)
= d

(
|S̄|2|S|+ |S|2|S̄|

)
− e(S, S̄)

(
|S̄|2 + 2|S||S̄|+ |S|2

)
= d|S||S̄|

(
|S̄|+ |S|

)
− e(S, S̄)

(
|S̄|+ |S|

)2
= n

[
d|S||S̄| − n · e(S, S̄)

]
Now we collect the left-hand expression:

λ2〈~x, ~x〉 = λ2 · n|S||S̄|

We divide by n and solve for e(S, S̄)/|S|:

λ2 · n|S||S̄| ≥ n
[
d|S||S̄| − n · e(S, S̄)

]
⇔ λ2|S||S̄| ≥ d|S||S̄| − n · e(S, S̄)

⇔ n · e(S, S̄) ≥ |S||S̄|(d− λ2)

⇔ e(S, S̄)

|S|
≥ (d− λ2)

|S̄|
n

In the definition (2.37, p. 24) of the isoperimetric constant, only subsets S with size up to n/2
are considered. Restricting S in this way fixes |S̄| ≥ (n/2), and therefore

e(S, S̄)

|S|
≥ 1

2
(d− λ2)

Now, this holds for all the partitions of V into S and S̄ obeying the size restrictions, including
any partition for which the left-hand expression becomes minimal – but this is just the isoperimetric
constant I(G), which proves the statement of theorem 3.1. �

3.2 Replacement Product

There are various possibilities to combine two graphs with n1 and n2 nodes (respectively) into a
graph with n1 ·n2 nodes, e.g. the zig-zag product [Sta17] (pp. 189ff.) or the tensor product [BM11]
(pp. 65f.).

We follow [ASS08] in a definition of a replacement product G ◦ H, where every node of G is
replaced (hence the name) by a copy of H, with additional edges according to the previous edges
in G. This product is not commutative, because it requires that the node count of H equal the
degree of G. It will feature prominently in the construction of constant-degree expanders.
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3.2.1 Description

Definition 3.6 For a D-regular and D-edge-colorable graph G with n nodes, and a d-regular graph
H with D nodes, the replacement product G ◦H obtained by the following procedure:

1. For any node j of G, 1 ≤ j ≤ n, let Hj be a copy of H with nodes 1 ≤ kj ≤ D, and with all
the edges of H reproduced in each copy.

2. For all edges of G with color c, 1 ≤ c ≤ D, between nodes r and s, add a d-fold multi-edge
between the nodes kr := c and ks := c in the copies Hr and Hs.

3. G ◦H consists of all the nodes in the n copies of H, with the connectivity as described in the
previous two steps.

Corollary 3.7 For G,H as in definition 3.6, the replacement product G◦H is a (2d)-regular graph
with n ·D nodes.

Proof: Since G had n nodes, and H, D nodes, respectively, the first construction step yields a graph
with n · D nodes. It is at this point d-regular, because the various copies Hj are not connected
with each other.

Since G is D-edge-colorable, let us assume G has been edge-colored in some way. Because G
is also D-regular, each of G’s nodes is incident with exactly one edge of each color c, 1 ≤ c ≤ D.
We recall corollary 2.17 (p. 14) to ascertain that G has no loops. In that case, all the edges of any
node in G must connect it to some other node of G (multi-edges are not forbidden, though).

The graph H consists of exactly D nodes. If we number them 1, · · · , D in the usual way, we
actually obtain a (trivial) node-coloring of H, provided that H is loop-free (cf. corollary 2.20,
p. 14) – although this has no bearing on this proof. We may, however, observe that each node of
H corresponds to exactly one of the D edge colors of G.

Together with the above observation on G, this means that the second construction step will
add one d-fold multi-edge to every node of every copy of H, and that every such multi-edge is
between two nodes with equal internal number (corresponding to the color c = kr = ks) in two
different copies Hr 6= Hs of H.

Since every node in G ◦H belongs to exactly one copy of H, every such node is incident with
the d edges inside its copy of H, and with the d edges of the added d-fold multi-edge from step 2,
which makes G ◦H (2d)-regular.

If G had a multi-edge between its nodes r and s, this implies multiple edges with different
colors (because G is D-edge-colorable); in that case, there are several multi-edges added between
the copies Hr and Hs, but each between different node pairs of those copies. �

Corollary 3.8 For G,H as in definition 3.6, if H is C-edge-colorable, then G◦H is (C+d)-edge-
colorable. Also, C ≥ d.

Proof: Take the colors 1, · · · , C to color the edges of all the copies in a uniform way during the
first construction step. All the d-fold multi-edges between nodes of different copies Hj that are
added in the second construction step may be colored C + 1, · · ·C + d.

Because H is d-regular, any proper edge coloring of H must use at least d different colors,
which means C ≥ d (cf. corollary 2.18, p. 14). �

We now show some examples to illustrate the construction of replacement products.

3.2.2 Examples

A Minimal Example: C4 ◦K2

C4 is the cycle-graph with n = 4 nodes; it is (D = 2)-regular. Since n is an even number, C4 is 2-
edge-colorable with alternating colors. Thus, C4 qualifies as the left-hand graph G of a replacement
product.

The complete graph with two nodes K2 consists of only D = 2 nodes connected by a single
edge; it is d = 1-regular, and qualifies as right-hand graph H to the replacement product with C4.

We show the two original graphs in figure 3.3 (p. 38) and recall that the node numbers of H
correspond to the color numbers of G, whereas the node numbers of G represent the various copies
of H obtained in the product’s first construction step.

Because K2 is a loop-free graph, it can be (properly) node-colored with two colors (otherwise,
the node colors shown in figure 3.3 would only show the intended correspondence to the edge colors
of C4). We use the colors blue and orange for c = 1 and c = 2, respectively.
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1 2

34

1

2

Figure 3.3: Graphs G := C4 (left) and H := K2 (right)

We now perform the first construction step (see figure 3.4): Each of the four nodes of G is
replaced by a copy of H.

1

2

1

2

1

2

1

2

H1 H2

H3H4

Figure 3.4: G ◦H, step 1

Because d = 1, the second construction step involves only single edges added to each of the
nodes. Node 1 of H1 will be connected to node 1 of H2 because there is a blue (c = 1) edge in
G between its nodes 1 and 2. Node 2 of H1 will be connected to node 2 of H4 because there is
an orange (c = 2) edge in G between its nodes 1 and 4. We show the completed second step in
figure 3.5 (p. 39), the added multi-edges (here: 1-fold) drawn thicker.

We observe that the resulting graph G ◦H is indeed 2-regular (2 = 2d). Because H is d-edge-
colorable, the product graph would be (2d = 2)-edge-colorable (in figure 3.5, we can interpret the
thin edges as one color, and the thick edges as another color).
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1
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1

2

1
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Figure 3.5: G ◦H, step 2

A Slightly Bigger Example: K4,4 ◦ C4

The complete bipartite graph G := K4,4 is (D = 4)-regular and (D = 4)-edge-colorable. The cycle
graph H := C4 is (d = 2)-regular and contains D = 4 nodes (see the previous example) (it is
also 2-edge-colorable and simple, i.e. loop-free). For the additional colors, we use teal (c = 3) and
purple (c = 4). In anticipation of the second construction step, we draw the cycle graph in a way
that its internal edges will not overlap with the multi-edges (which will be twofold in this case).

Because the resulting product graph will contain eight copies of H, we omit the node numbers
in H and instead draw colored dots; see figure 3.6:

1

2

3

4

5

6

7

8

1

2

3

4

Figure 3.6: Graphs G := K4,4 (left) and H := C4 (middle); shorthand for H (right)

We show the product G ◦H in figure 3.7 (p. 40). This is a 4-regular graph with 32 nodes, and
it could be 4-edge-colored if so desired.
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Figure 3.7: G ◦H

An Example with Multi-Edges in G

Our last example features existing multi-edges in the left-hand graph G – we take a (D = 3)-regular
bipartite graph with (D = 3)-edge-coloring and n = (5 + 5) nodes. For H, we choose the cycle
graph C3, which has D = 3 nodes and is (d = 2)-regular (but not 2-edge-colorable, because it has
odd length). See figure 3.8 (p. 41).

Note that G contains a triple edge between nodes 2 and 8 – a separate connected component.
There is also a double edge between nodes 3 and 10.

The product G ◦ H is shown in figure 3.9, p. 41. We observe that the product graph also
consists of two connected components, one of which is made up of the copies H2 and H8, with
three parallel double edges added in construction step 2.
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Figure 3.8: A 3-regular bipartite graph G (left) and H := C3 (right, shorthand)

Figure 3.9: G ◦H
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3.3 Replacement Product of Two Expanders

We recall from corollary 2.38 (p. 24) that all expanders with δ = 0 consist of more than one
connected component, which in turn means that all connected undirected graphs have δ > 0.

We have seen in an example (figure 3.9, p. 41) where, for an disconnected G, the replacement
product G ◦H is also disconnected.

Before we further examine the expansion parameter of replacement products, we formalize the
connectedness of a replacement product in the following

Lemma 3.9 Given two graphs G,H satisfying the conditions of definition 3.6 (p. 37), the replace-
ment product G ◦H is connected if and only if both G and H are connected.

Proof:

• If G or H are disconnected, the product G ◦H is disconnected as well:

– If G = (VG, eG) is disconnected, the nodes of G may be separated into two disjoint
nonempty sets VG,1 ] VG,2 = VG with no edges between those sets. There might be
more than two connected components, but it suffices to separate just one from the rest
of the graph.

We pick nodes r ∈ VG,1 and s ∈ VG,2. In G, r and s are not indirectly connected accord-
ing to definition 2.13 (p. 13). But this also means that the second step of definition 3.6
stipulates that no multi-edge will be added between the copies Hr, Hs.

This holds for any r and s we choose – which means that we may group the corresponding
copies Hr and Hs into two sets H(1) and H(2), and that there are no multi-edges added
in the second step of definition 3.6 between any two copies of H, where one is in H(1)

and the other in H(2). Because the first step of definition 3.6 only creates edges within
the confines of the various copies of H, there will be no edges between H(1) and H(2) in
G ◦H; thus, the product is disconnected.

– If H = (VH , eH) is disconnected, we may separate its nodes into two disjoint nonempty
sets VH,1 ] VH,2 = VH with no edges between those sets. This also holds for all the
copies Hj of H that are required to construct G ◦ H. The numbering of nodes is the
same in all copies.

But step 2 of definition 3.6 will only add multi-edges between nodes with the same
internal number in two different copies Hr, Hs, according to the respective edge color
in G. Thus, any such two nodes in copies of H will correspond to a single node in the
original H, which belongs to either VH,1 or VH,2.

If we group all the nodes of G ◦H corresponding to VH,1 and VH,2, into two sets V(1)

and V(2), respectively, then there are no edges between those node sets in G ◦H. Step 1
of definition 3.6 replicates the connectivities in H, and step 2 will add multi-edges only
within V(1) and V(2), not across – this makes G ◦H disconnected.

• If G and H are both connected, we observe that. . .

. . . all the nodes in H are indirectly connected, i.e. there are paths of edges between them.
This is faithfully reproduced within each of the copies Hj in G ◦H.

. . . all the nodes in G are indirectly connected, too. Any path between two arbitrary nodes
r, s in G can be reproduced as a path between the copies Hr and Hs via the multi-edges
added in step 2 of definition 3.6:

If we can reach s from r in G via a single node j by traveling along two edges, then
we may pick any node in Hr. Because Hr is connected, we can reach the node with a
multi-edge towards Hj . Because Hj is connected, we can reach the node in Hj that has
a multi-edge towards Hs. Having traveled there, we can reach any node in Hs.

The same argument holds if there are more than one intermediate nodes on the path
from r to s. Since r and s were arbitrary, the whole of G ◦H is therefore connected.

�

Thus, G ◦H can only be connected if both G and H are. Alon et al. give the following lower
bound for the expansion of a replacement product of two expanders:

Theorem 3.10 Let G be an [n,D, δG]-expander and H a [D, d, δH ]-expander. Then, F := G ◦H
is an [nD, 2d, δ]-expander, with δ ≥ (δ2

G · δH)/80.
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Proof: Corollary 3.7 (p. 37) confirms that the resulting product F has nD nodes and is (2d)-
regular. What remains is the examination of δ, which we provide according to the proof in [ASS08]
(theorem 3).

First, we observe that the stated inequality allows for δ = 0 if any of δG, δH are zero; this is in
agreement with the preceding lemma 3.9. For the following, let G and H both be connected; thus
δ > 0.

Secondly, we recall that (per definition 3.6, p. 37), in a replacement product F = G ◦H, the
connectivity of H is reproduced in each Hj , while the edges of G are used to define connections
between the various copies Hj .

The overall goal is to show that for any selection S of at most half the nodes of F = (V, e), the
edge count between S and S̄ := V \ S satisfies the condition

e(S, S̄) ≥ δ · (2d) · |S| (*1)

with δ as stated above (using definitions 2.37 and 2.40 (pp. 24 and 25, respectively)). Because
there will be several references to various inequalities, we use labeled equations in this section so
as to enhance clarity.

Both G and H are connected graphs with positive expansion parameters. The proof by Alon
et al. employs a number of ways to organize the nodes of F into sets in order to reason about
the expansion properties of G or H, depending on context. We provide a schematic illustration of
those sets in figure 3.10 (p. 44) and introduce the quantities in full before we commence the actual
proof. In order to limit symbolic cluttering, we will use the labels of graphs and their node sets
synonymously.

Let S be a selection of nodes in F , and S̄ := F \ S its complement, with |S| ≤ |F |/2 = nD/2:

• For each node j in G, and corresponding copy Hj of H, let Sj := S ∩Hj ; S̄j := Hj \Sj . The
H• are visualized as rectangles in figure 3.10.

• The index set I ′ contains the indices j of those Hj for which the node count |Sj | is at most
(1− δG/4)D. We recall from definition 3.6 (p. 37) that every one of the n copies H• consists
of D nodes.

The index set I ′′ := {1, · · · , n} \ I ′ contains all the other indices, belonging to copies Hk

where |Sk| > (1− δG/4)D.

• Given the index sets (which depend on the concrete selection S), we define six further sets
of nodes (see an example partition schematic in figure 3.10):

S′ :=
⋃
j∈I′

Sj S̄′ :=
⋃
j∈I′

S̄j

S′′ :=
⋃
j∈I′′

Sj S̄′′ :=
⋃
j∈I′′

S̄j

H ′ :=
⋃
j∈I′

Hj H ′′ :=
⋃
j∈I′′

Hj

• Because the H•, and, consequently, the S• and S̄• are mutually disjoint, this implies that
F = H ′ ]H ′′; H ′ = S′ ] S̄′; H ′′ = S′′ ] S̄′′; S = S′ ] S′′ and S̄ = S̄′ ] S̄′′.

43



H1

S1 S̄1

H5

S5 S̄5

H4

S4 S̄4

H2

S2 S̄2

H3

S3 S̄3

S′

S̄′

S′′ S̄′′

H ′

H ′′

•

•

•

•

S S̄

Figure 3.10: Schematic drawing of a product graph F , featuring the subsets used in the proof of
theorem 3.10, with example index sets I ′ = {1, 4, 5} and I ′′ = {2, 3} for a given selection S. Nodes
(within the H•) and edges (within the H• and between different H•) omitted.

Broadly speaking, the index set I ′′ describes copies of H where the selected nodes take up a
large proportion of the nodes (remember that δG is between 0 and 1, so the S• with those indices
take up at least three-quarters of the nodes in the respective H•).

If the selection S is centered on few, but highly populated, copies of H, the edges between
S and S̄ are mainly between the H•, and the expansion behavior is most influenced by G and
δG. The other border case would be for a selection distributed over many, but sparsely populated,
copies of H – then, many of the edges between S and S̄ would be within the respective H•, and
the expansion behavior would be most influenced by H and δH .

Beginning with the proof, we first consider the index set I ′ and its associated node sets. For
any j ∈ I ′, the selected node set Sj has size of up to (1 − δG/4)D, which in turn means that the
corresponding complement S̄j has size (D − |Sj |), which is at least δGD/4. Because |Sj | ≤ D, we
may continue this inequality:

|S̄j | ≥
δG
4
D ≥ δG

4
|Sj |

We now have to distinguish two cases:

• If |S̄j | ≤ |Sj |, then the node set S̄j contains at most half the nodes of the copy Hj of H.
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Because H is a [D, d, δH ]-expander, this also holds for the copy Hj , disregarding edges added
in step 2 of the product construction (cf. definition 3.6, p. 37). Thus, we may conclude that

the edge count between S̄j and its complement in Hj , S̄j = Sj , satisfies

e(S̄j , Sj) ≥ δH · d · |S̄j | ≥ δH · d ·
δG
4
|Sj |

• If |Sj | < |S̄j |, then the node set Sj itself contains at most half the nodes of Hj , and we
may plug in the expansion property of H directly and obtain e(Sj , S̄j) ≥ δH · d · |Sj |. We
may continue this inequality by introducing the factor δG/4, which is at most 1/4 but not
negative. After that, the inequality agrees with the first case.

We collect both cases into a single result:

∀j ∈ I ′ : e(Sj , S̄j) ≥
1

4
δGδH · d · |Sj | (*2)

We sum over all I ′ and introduce a factor of 2/2 to reflect that F is (2d)-regular:

e(S′, S̄′) =
∑
j∈I′

e(Sj , S̄j) ≥
∑
j∈I′

1

4
δGδH · d · |Sj | =

1

4
δGδH · d · |S′| =

1

8
δGδH · 2d · |S′| (*3)

Now, if the size of S′, namely the node count of S in copies of H that are not “densely
populated” (in the sense of the above definition), were at least δG · |S|/10, we could argue, using
(*3), that

e(S, S̄) ≥ e(S′, S̄) ≥ e(S′, S̄′) ≥ 1

8
δGδH · 2d ·

1

10
δG|S| =

1

80
δ2
GδH · 2d · |S| , (*4)

which would prove the statement δ ≥ δ2
GδH/80, formulated in (*1).

The other case is rather more involved. For the following, therefore, |S′| < δG · |S|/10, and thus

|S′′| = |S| − |S′| >
(

1− δG
10

)
|S| ≥ 9

10
|S| (*5)

(The last inequality in (*5) reflects the fact that δG ∈ [0, 1].)
Here, most of the selected nodes are in “densely populated” copies of H, and we will exploit the

expansion property of G (because many of the edges connecting S and S̄ will be between different
H•), and thus consider the edges of G, or, respectively, the multi-edges between copies H• in F .
The additional effort stems from the fact that the nodes of G have been replaced by whole sets of
nodes (i.e. the copies of H) in F , and we will have to build our arguments from the node scale to
the H• scale.

Starting with observations on the index sets per se, which constitute a partition of the nodes
in G, we will expand on the relationships between I ′′ and various set sizes, before we can finally
combine all intermediary results.

First, we observe the following restrictions for the Sj of the index set I ′′:

∀j ∈ I ′′ : D ≥ |Sj | >
(

1− δG
4

)
D (*6)

We sum over all I ′′:

|I ′′| ·D ≥ |S′′| > |I ′′| ·
(

1− δG
4

)
D (*7)

And we reorganize (*7) into two inequalities relating to |I ′′|:

|I ′′| ≥ |S
′′|
D

|I ′′| < |S′′|(
1− δG

4

)
D

(*8)

Using |S′′| ≤ |S| ≤ nD/2, we obtain, using the right-hand inequality of (*8), and δG ∈ [0, 1]:

|I ′′| < nD/2(
1− δG

4

)
D

=
2n

4− δG
≤ 2n

3
(*9)
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Thus, at most two-thirds of the copies of H can be “densely populated” by S in F .
From this, and |I ′|+ |I ′′| = n, we may directly conclude that

|I ′| = n− |I ′′| ≥ n

3
≥ 1

2
|I ′′| (*10)

We use the expansion property of G, which is an [n,D, δG]-expander, and distinguish two possible
cases for |I ′|:

• If |I ′| ≥ n
2 , then |I ′′| ≤ n

2 , and thus, there are at least δG · D · |I ′′| edges between I ′′ and

I ′ = I ′′ in G (recalling that the sets I ′ and I ′′ partition the node set of G).

• If |I ′| ≤ n
2 , then there are at least δG · D · |I ′| edges between the two node sets. We may

express this in terms of |I ′′| by using (*10).

Collecting both cases, we conclude that, for the graph G:

eG(I ′, I ′′) ≥ 1

2
δG ·D · |I ′′| (*11)

Now, while G describes connections between the single nodes in I ′ and I ′′, the product graph
F features a d-fold multi-edge between different H• for every edge in G.

We recall the definitions on p. 43, and express (*11) in the terms of the product graph F :

e(H ′, H ′′) ≥ 1

2
δG · dD · |I ′′| (*12)

We will now work out various relationships between the selection sets S′ and S′′, their comple-
ments, and H ′, H ′′. The goal is to obtain a suitable restriction of e(S, S̄) to convenient subsets
about which it is easier to reason, like in the first two inequalities in (*4). In the end, we will be
comparing the edge count between S′′ and S̄′ in order to arrive at a final estimation.

First, we observe that, because of the size restrictions, each S̄j in S̄′′ (i.e. for j ∈ I ′′) will have
a size of at most δG ·D/4. Summing over I ′′ yields

|S̄′′| ≤ 1

4
δG ·D · |I ′′| (*13)

The nodes in S̄′′ are each fitted with a d-fold multi-edge in the second construction step of the
replacement product, and therefore can support at most d · |S̄′′| edges between different H•. Since
S̄′′ ⊂ H ′′, and H ′∩H ′′ = ∅, only at most d · |S̄′′| edges can connect S̄′′ with nodes H ′, which yields

e(S̄′′, H ′) ≤ 1

4
δG · dD · |I ′′| (*14)

We recall from the definitions above that H ′′ = S′′ ] S̄′′. Thus, if the edge count between H ′ and
S̄′′ is limited by (*14), but the edge count between H ′ and H ′′ has a lower bound from (*12),
that means that at least the difference of those two estimates must contribute to the edge count
between H ′ and H ′′ \ S̄′′ = S′′:

e(S′′, H ′) ≥ 1

4
δG · dD · |I ′′| (*15)

Up to now, we have proceeded from the expander property of G, via e(H ′, H ′′) to e(S′′, H ′).
Our aim now is to reduce H ′ to S̄′, because we want to obtain a formula expressing the edge count
between some subset of the selection S and some subset of its complement S̄.

We recall that the selected nodes in H ′ are fewer than δG · |S|/10, or our efforts would have
stopped at the inequality in (*4). Because the formula in (*15) uses D · |I ′′|, we first adapt the
S′ size estimation accordingly. The authors of [ASS08] also replace the factor of (1/10) by (1/6),
which means:

|S′| < 1

10
δG · |S| =

1

6
δG ·D · |I ′′| ·

(
6

10
· |S|
D · |I ′′|

)
(*16)

Now, since D · |I ′′| is the complete node count in H ′′, this term is a conservative upper bound for
|S′′| (cf. the left-hand inequality in (*8)), which only counts the selected nodes in H ′′. We already
determined in (*5) that |S′′| is at least nine-tenths of |S|. With this, we can estimate the bracketed
term in (*16), canceling out |S|:

6

10
· |S|
D · |I ′′|

≤ 6

10
· |S|9

10 |S|
=

2

3
< 1
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Thus, we may continue the inequality in (*16) by leaving the bracket term out completely:

|S′| < 1

6
δG ·D · |I ′′| (*17)

Like before, we observe that the selected nodes in S′ are each connected with d-fold multi-edges to
nodes in some H•. The size limit from (*17) therefore also limits the edge count between S′ and
H ′′, which holds all the H• necessarily disjoint with S′. Since S′′ ⊂ H ′′, this also means:

e(S′, S′′) <
1

6
δG · dD · |I ′′| (*18)

This lower bound, together with H ′ = S′ ] S̄′, and with the estimate from (*15), means that
that the edge count between S̄′ and S′′ must be at least the difference of the two bounds:

e(S′′, S̄′) ≥
(

1

4
− 1

6

)
δG · dD · |I ′′| =

1

12
δG · dD · |I ′′| =

1

24
δG · 2d ·D|I ′′| (*19)

We recall from above that D|I ′′| is at least nine-tenth of |S|, which implies it is certainly larger
than three-tenths of |S|, which allows us to finally state that

e(S, S̄) ≥ e(S′′, S̄) ≥ e(S′′, S̄′) ≥ 1

24
δG · 2d ·

3

10
|S| = 1

80
δG · 2d · |S| ≥

1

80
δ2
GδH · 2d · |S| , (*20)

where we introduced a factor of δGδH ∈ [0, 1] in the last inequality in order to reproduce the
statement of the theorem. This completes the proof for both cases of the set size |S′|. �

3.4 Existence of d-Regular, d-Edge-Colorable Expanders

We introduced a simple way to construct d-regular and d-edge-colored bipartite graphs in sub-
section 2.2.2 (pp. 20ff., in lemma 2.29 and corollary 2.30), which yields a connected graph (with
positive expansion δ) for d ≥ 2.

The authors of [ASS08] state (theorem 2) that there is some δ > 0 such that there is a d-edge-
colorable [n, d, δ]-expander for any even n and any d ≥ 3. In lieu of a proof, they recommend
considering random d-regular bipartite graphs, which we will do shortly (we will also expand on
arbitrary random d-regular d-edge-colorable graphs).

However, if that δ were a numeric constant independent of d and n, its value or some kind
of bound would presumably have been offered at this point. Alon et al. mention a conference
contribution by M. Pinsker1 that proves the existence of constant-degree expanders.

We tend to interpret theorem 2 of [ASS08] differently, namely that for any n and d as specified
above, there is a connected d-regular d-edge-colorable undirected graph. The connectedness then
implies that its expansion parameter δ is positive. This we will, if not conclusively prove, at least
strongly motivate in the following two subsections.

In addition, we would like to refer to work by B. Bollobás [Bol88] who demonstrates, translated
to this work’s vernacular, that for any ε ∈ (0, 1

2 ), there is a degree d such that almost all d-regular
graphs will have expansion δ = 1

2 − ε.

3.4.1 Random d-Regular d-Edge-Colored Bipartite Graphs

It can be shown [Fri21] that all d-regular bipartite (loop-free) graphs are d-edge-colorable. We
will now demonstrate how to construct all possible d-regular and d-edge-colored bipartite graphs
for given n ∈ 2N and d ∈ N. The randomness alluded to in the subsection title then amounts to
choosing one particular realization of such a graph; more on which shortly.

First, we stress that requiring d-regularity and the possibility for a d-edge-coloring simplifies
construction because it implies that the resulting graph has no loops (multi-edges are, however,
possible), and that every node will be incident with d edges of all the colors 1 ≤ c ≤ d.

For this subsection, we assume that the node subsets of the bipartite graph are {1, · · · , n2 }
for node color 1, and {(n2 + 1), · · · , n} for node color 2. If this were not the case, there would
be additional freedom for the random choice, but this would not lead to new graphs because of
isomorphism (one could always find a permutation that re-labels the nodes according to the above
assumption).

1On the Complexity of a Concentrator. 7th Annual Teletraffic Conference (1973), pp. 1–4.
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We recall the concept of half-edges from definition 2.1 (p. 9) right at the beginning of this work.
In order to construct a d-regular d-edge-colorable graphs, we start by fitting every proto-node with
d half-edges, one each of the colors {1, · · · , d}.

For the later graph to be d-edge-colorable, each half-edge of color c of a node with node
color x needs to be connected to exactly one half-edge of color c from a different node (loops are
impossible to construct in this scenario). Because the graph is to be bipartite, this limits the choice
of candidates to nodes of the respective other node color (3− x) that still have free (unconnected)
half-edges of color c.

We propose a systematic approach, constructing all the n
2 edges of a single color, then moving

on to the next color, etc. For each color, we must pair off the color-1 nodes with the color-2 nodes;
in other words, we determine a bipartite matching. Because the node count is even, this will be a
perfect matching, in that every node will be connected to exactly one other node. Equivalently, we
construct an intermediate 1-regular graph (such graphs are always bipartite and 1-edge-colorable
because they consist of node pairs joined by single edges; cf. figure 2.7, p. 19).

Because the two node sets are of equal size, it is always possible to create n
2 pairs such that

every color-1 node is connected to exactly one color-2 node, and vice versa. We now recall the
numbering we initially stipulated, and find that it suffices to choose a total bijective map of the
numbers {1, · · · , n2 } on themselves, and then add n

2 to the mapping result. This will, for each node
of color 1, determine exactly one of the color-2 nodes.

Such total bijections of finite number sets are called permutations, and are introduced in sec-
tion B.1 (pp. 80ff.) of the appendix. In particular, we recall that the permutation for our problem
belongs to Sn/2 (cf. definition B.2, p. 80), and that there are (n2 )! different permutations in the
group Sn/2 (per lemma B.1, p. 80).

This can be repeated independently for all the d edge colors. In the end, all the edges con-
structed in this way can be superimposed to yield a d-regular bipartite graph.

Given the initial subsets of nodes with the labeling as indicated above, this makes for((n
2

)
!
)d

different possible edge-colored graphs, which we may construct by drawing one partition of Sn/2
for each edge color.

If we were not interested in the actual edge-coloring, only the d-edge-colorability, we would have
to subtract from that number all redundant graphs that share the same connectivity. Suffice it to
remark that every concrete edge-coloring implies that a such a graph is also edge-colorable.

If the permutations are drawn at random, it is unlikely (the larger d, the more unlikely) that
the exact same permutation is drawn multiple times. If we drew d times the same permutation, we
would end up with n

2 node pairs connected by d-fold multi-edges. This is suppressed by a factor
of ((n2 )!)1−d. There are other possibilities for disconnected resulting graphs, but for d ≥ 3, many
of the graphs constructed in this manner will be connected, and thus have positive expansion δ.

We recall the construction presented in subsection 2.2.2 (pp. 20ff.): In that case, the permuta-
tions for color c were just the powers (1; · · · ; n2 )c−1, producing cyclic shifts of (1, · · · , n2 ) by (c− 1)
positions.

By way of an example, we reconstruct the cubic (3-regular) bipartite graph in figure 3.8 (p. 41).
The matchings for the three colors are shown in figure 3.11 (p. 49). We list the three permutations
(they can be reverse-engineered from figure 3.11 by subtracting 5 from the right-hand node labels):

j 1 2 3 4 5
σ1(j) 2 3 5 1 4

σ1(j) + 5 7 8 10 6 9
σ2(j) 1 3 5 4 2

σ2(j) + 5 6 8 10 9 7
σ3(j) 4 3 2 5 1

σ3(j) + 5 9 8 7 10 6

Table 3.1: The bipartite cubic graph from figure 3.8. Permutations of the three colorings.
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Figure 3.11: The bipartite cubic graph from figure 3.8. Edges with colors 1 (left), 2 (middle) and
3 (right).

3.4.2 Random d-Regular d-Edge-Colored Graphs

Our approach to general d-regular and d-edge-colored graphs is just a generalization of the previous
technique; it has the same drawback in that it is easy to create all the possible colorings, but that
there will be many redundant versions of the same d-edge-colorable graphs. However, this aesthetic
caveat is not relevant to the expander construction in section 3.6, because that only will require
the first connected d-regular d-edge-colorable graph for a given node count, and thus, the first
d-edge-colored one will be sufficient for the task.

In the preceding subsection, we had stipulated that there is a given bipartition with the nodes
{1, · · · , n2 } of color 1 and the others up to n of color 2. If we were given just the n nodes, we could
construct different graphs, but only as regards labeling – because of isomorphism. The situation
is different if the graph need not be bipartite.

We may again start with n ∈ 2N nodes, each fitted with d ∈ N colored half-edges. But in this
case, there is no previous selection of the nodes into two classes. In order to create a d-regular
and d-edge-colored graph, we still have to connect pairs of half-edges of the same color – which is
always possible because n is even. We also may treat the d edge colors independently. For every
color c, we have to construct a perfect matching of the n nodes, i.e. a 1-regular graph consisting
of node pairs, each connected by one c-colored edge.

However, here we may partition the nodes independently for each color. One way to do this
is to draw a subset of size n

2 and treat its members as the color-1 nodes of a temporary bipartite
graph; the subset’s complement (of equal size) then holds its color-2 nodes. There are(

n

n/2

)
=

n!(
n
2

)
!
(
n
2

)
!

different possible such subsets.
After this, we have the same situation as in the bipartite case of the preceding subsection.

We may give all the nodes some intermediary labels such that the color-1 nodes are temporarily
called {1, · · · , n2 }, and the color-2 nodes, {n2 , · · · , n}, respectively. We then can draw one of the
permutations from Sn/2, and calculate the new edges of color c by taking the permutation function’s
values and adding n

2 to each. After that, we can define the actual new edges of the graph, using
the assignment table for the intermediary node labels (we will demonstrate this shortly with an
example).

This, however, leads to an over-estimation of the number of d-edge-colored graphs which results
from the arbitrary partitioning into intermediary color-1 and color-2 nodes.. If we draw all possible
subsets with n

2 nodes, we double-define every edge, because for j 6= k, if we connect a color-1 node
j with a color-2 node k, this yields the same edge as if we connected a color-1 node k to a color-2
node j. This holds for any of the n

2 pairs of nodes generated for each color, and we may correct

for this by dividing the number of possible edge colorings by 2n/2.
Overall, this yields the following number of 1-edge-colorings:(

n

n/2

)
·
(n

2

)
! · 1

2n/2
=

n!

2n/2
(
n
2

)
!

=
n!

2(n2 ) · 2(n2 − 1) · · · · · 2(1)
=

n!

(n)(n− 2) · · · · · (2)

= (n− 1)(n− 3) · · · · · (1)
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(This is, by the way, equal to the number of permutations in Sn that are composed of mutually
disjoint (i.e. canonical) cycles of length 2 (i.e. transpositions), where we encounter the same situ-
ation that τjk = τkj . This is because the graph of canonical cycles is a perfect matching for those
permutations, too. More on canonical cycles may be found in appendix section B.1, pp. 80ff.)

Thus, the overall number of d-regular, d-edge-colored graphs with n ∈ 2N nodes is((
n

n/2

)
·
(n

2

)
! · 1

2n/2

)d
As an example, we construct such a graph with n = 10 and d = 3. For convenience, we re-use

the permutations listed in table 3.1 (p. 48), which leaves us with the choice of three partitions of
{1, · · · , 10} into subset pairs of equal size, which we choose as

S1 := {2, 5, 6, 8, 9} ⇒ S̄1 := {1, 4, 5, 7, 10}
S2 := {1, 2, 3, 8, 10} ⇒ S̄2 := {4, 5, 6, 7, 9}
S3 := {1, 3, 6, 7, 10} ⇒ S̄3 := {2, 4, 5, 8, 9}

For the intermediary labeling, we assign the labels in the order listed above (meaning, e.g., that
we label the tuple (2, 5, 6, 8, 9) as (1, 2, 3, 4, 5), etc.), and obtain the following matchings (denoting
nodes of temporary color-1 for edge color c by rc, and their counterparts of node color 2 by sc; j
is used for the respective intermediary color-1 node label):

j 1 2 3 4 5
r1 2 5 6 8 9
s1 3 4 10 1 7
r2 1 2 3 8 10
s2 4 6 9 7 5
r3 1 3 6 7 10
s3 8 5 4 9 2

Table 3.2: A cubic graph with 3-edge-coloring. Matchings for the three colorings.

The graph edges are not from j to (σc(j) + n
2 ) as in the bipartite case, but from rc(j)tosc(j).

We show the resulting graph in figure 3.12:
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Figure 3.12: A cubic graph with 3-edge-coloring.

We observe that this graph is connected, but not bipartite because it contains a cycle of odd
length (cf. theorem 1.4, p. 8, in [Nic18]). In particular, there is a cycle of length 3 containing
the nodes 2, 6 and 10. If we colored node 2 with node color 1, then both nodes 6 and 10 would
need to be node color 2, but they are directly connected by an edge; thus, the graph cannot be
2-node-colorable / bipartite (cf. definition 2.19, p. 14).
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3.5 A Special Class of Expanders

At the start of section 2 in [ASS08], the authors introduce a special kind of parametrized graph,
called LD(q, r), which is a specialized version of a more general Cayley graph treated by N. Alon
and Y. Roichman in [AR94]. The name evidently derives from the fact that their graphs have
logarithmic diameter2 (depending on their node count). Since this has no bearing on our problem,
we will adapt the notation and denote such graphs with G.

Using the spectral gap theorem 3.1 (p. 32), Alon et al. show that, under certain conditions, those
graphs are expanders with δ ≥ 1

4 . For this, we need a calculation of the largest two eigenvalues of
such a graph’s adjacency matrix.

The G(q, r) graphs will later be used to construct constant-degree expanders in the following
section 3.6, which will involve two replacement products (cf. sections 3.2f., pp. 36ff.). We recall
that definition 3.6 (p. 37) stipulates that the left-hand graph is D-regular and D-edge-colorable.

However, the G(q, r) graphs (as introduced shortly) will, in fact, not be edge-colorable at all
(according to corollary 2.17, p. 14). because they contain loops. We will point out this (and
another) difficulty when we have introduced the graphs, but then continue to follow the proof of a
theorem on their second-largest eigenvalues (theorem 5 of [ASS08]).

After this, we propose an adaptations of not only the construction of G(q, r) but also of the
replacement product, which, in this special context, will fix the problem of edge-colorability and
graph loops.

3.5.1 Constructing the Graphs G(q, r) as Defined in [ASS08]

Preliminaries

For the following, we will rely on the contents of chapter E (pp. 107ff.), especially the section E.3
on Galois fields.

We recall the polynomial construction of a Galois field GF (pk) for p prime and k > 1, using
an irreducible modulus polynomial m(x) ∈ Zp[x] of degree k (according to lemma E.22, p. 114),
which is necessary to facilitate multiplication. The arithmetics of GF (pk) are summarized in
definition E.24 (p. 114).

We also recall from chapter E.3 that the elements of GF (pk) can be viewed as polynomials,
which in turn may be represented by p-ary strings of coefficients, or coefficient tuples. A p-ary
string of digits 0 to (p − 1) can be viewed as an encoding of a natural number; in fact, all the
numbers 0 to (pk − 1) can be encoded using such strings – with the caveat that multiplication is
taken modulo m(x), and will yield different results than unbounded non-modulo multiplication if
the factor polynomials have sufficiently large degrees. In those cases it is inevitable to consult the
multiplication table, which is dependent on the choice of m(x).

Relevant Algebraic Structures

For the construction in [ASS08], we let t ∈ N, q := 2t, and F := GF (q). Since 2 is prime, such
Galois fields do exist, and the polynomial coefficients are from Z2 = {0, 1}. For binary strings (as
representations of elements (polynomials) in F), addition amounts to a bitwise xor. Also, there
is no difference between addition and subtraction since, in Z2, 1 + 1 = 1 − 1 = 0; this will be
elementary for the following argument.

Since F is a field, we may construct a vector space (cf. definition A.7, p. 68) over F, with the
elements of F as scalars, and as components of vectors. In our case, we consider the Cartesian
product Fr+1, with r ∈ N. Addition and scalar multiplication can be carried out component-wise
like in the definitions A.9 and A.10 (p. 70) for Euclidean spaces.3 Other than for the (non-finite)
Euclidean space Rn, addition and scalar multiplication behave according to the arithmetics of F.
This implies that the vector space Fr+1 is finite itself: There are only q different elements in F. Any
vector from Fr+1 must therefore be one of the qr+1 different vectors we can build. The arithmetics
in F ensure that neither addition nor scalar multiplication (which can only involve components
and scalar factors from F), can lead outside the finite structure of Fr+1.

2The diameter of an undirected graph is [Nic18] (p. 12) the maximum of distances between any two of its nodes;
the distance being the length of a shortest path between two such nodes.

3Fr+1 is, however not an Euclidean space itself – among other things, because we do not define any inner product
(cf. definition A.8, p. 69).
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We summarize the cascade of structures used in the following:

• Z2 = {0, 1}, the residue system modulo 2.

• F = GF (q) = GF (2t) ∼= Z2[x]m(x), a finite field consisting of the q polynomials of lesser
degree than t, with coefficients from Z2, using an irreducible modulus polynomial m(x) of
degree t for multiplication.

• Fr+1, a finite vector space over F consisting of the qr+1 different vectors with (r + 1) com-
ponents that can be constructed using only elements of F.

Small Example

The smallest t for which the polynomial structure of GF (2t) becomes relevant is t = 2, which means
q = 4 and F = {0, 1, 10, 11} in binary string notation. There is only one irreducible polynomial of
degree 2, namely m(x) = x2 + x+ 1, because (x2 + x) contains the factor x, and (x2 + 1) contains
the factor (x+ 1): (x+ 1) · (x+ 1) = x2 + x+ x+ 1 = x2 + 1. m(x), on the other hand, does not
have any nontrivial factors.

We represent m(x) by the binary string 111 and derive the multiplication table (taking the
modulus (by applying xor with m(x)) where product strings have length greater than 2, and
remembering to calculate products with Z2 modulo rules, e.g. 11 · 11 = 110 + 11 = 101):

· 1 10 11
1 1 10 11

10 10 11 1
11 11 1 10

· 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

Table 3.3: Multiplication in F = GF (22) with m(x) = 111. Binary strings (left) and corresponding
numbers (right).

The structure F2 needed for the graph edges (see the definition below) contains the sixteen
entries (0, 0), · · · , (11, 11).

In order to distinguish this from the vector space Fr+1, we choose r = 2; thus, the finite vector
space for the graph nodes (again, cf. the next definition) is F3, and consists of all the vectors with
three components, each taken from F; this makes for 64 elements: 0

0
0

 ,

 0
0
1

 ,

 0
0

10

 ,

 0
0

11

 ,

 0
1
0

 , · · · ,

 11
11
11


We demonstrate the vector space operations. For addition, we recall that adding polynomials

(binary strings) is performed component-wise, and the polynomial components are just the digits
of the binary strings; therefore addition is bitwise, and modulo 2 (as per the rules of Z2). We add
leading zeros to highlight the bitwise operations 01

11
10

+

 01
01
11

 =

 00
10
01


For scalar multiplication, we have to consult the multiplication table of F:

11 ·

 01
11
10

 =

 11
10
01


This may serve as a demonstration that the operations in Fr+1 always yield vectors belonging

to Fr+1, as it should be for any vector space, and that, due to the various modulo operations, the
vector space is finite.

Construction

Definition 3.11 For r, t ∈ N and q := 2t, the graph G(q, r) is constructed in the following way:

• The nodes are identified by the qr+1 vectors in Fr+1, where F := GF (q).
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• Two nodes ~a,~b are connected by an edge if there is a pair (x, y) ∈ F2 such that

~b = ~a+ y · ~px, where ~px :=


1
x
x2

· · ·
xr


The edge between those nodes has color (x, y).

(The powers of x can be calculated by repeated multiplications in F.)

The authors state that such a graph is q2-edge-colorable because there are q2 different pairs
(x, y), and because of

Corollary 3.12 For (x, y) ∈ F2, if ~b = ~a+ y · ~px, then ~a = ~b+ y · ~px.

Proof: The vector equation in definition 3.11 stipulates that ~a = ~b− y · ~px, but since subtraction is
carried out component-wise, the rules of F apply. In the polynomial representation of the Galois
field F, addition and subtraction are calculated coefficient-wise modulo Z2 – and, as we pointed
out above, there is no difference between addition and subtraction in Z2. �

The same pair (x, y) connects ~a to ~b and ~b to ~a (not to any other node), and may therefore
serve as edge color.

Also, because there are q2 such different pairs, any node is incident with q2 edges, making
G(q, r) a q2-regular graph.

The Dilemma of Edge-Colorability

If we consider the edge function of G(q, r) from definition 3.11, we observe that there are some

cases where ~b = ~a, or, equivalently, ~b = ~a+~0. Since ~px cannot be the zero vector for any x because
of its first component, this is happens precisely when y = 0 – which holds for q different pairs
(x, 0) ∈ F2.

Thus, G(q, r) as defined above has q loops (because different pairs (x, y) imply different edges)
at each of its nodes, and (q2 − q) edges leading to other nodes, respectively. This is a problem in
two ways:

• In our preliminaries chapter 2, we had expressly stated that edge-colorable graphs cannot
have loops (edges connecting a node to itself) in corollary 2.17 (p. 14).

• Even if we permitted loops to carry colors, our notion of node degree would stipulate that q
loops with different colors contribute 2q, making the graph (q2 + q)-regular. This would be
useless for the expander construction in the next section 3.6, because this involves replacement
products (cf. definition 3.6, p. 37), and the G(q, r) appearing on their respective left-hand
sides would have to feature matching numbers for degree and edge-colorability.

The second point might be mitigated if we counted loops once, not twice, when calculating a
node’s degree. While this is possible, it would imply that a node’s degree would no longer match the
corresponding row (or column) sum of the graph’s adjacency matrix (cf. definition 2.11, p. 13) – a
property we already exploited above, particularly in the proof of lemma 2.34 (p. 23) when showing
that a d-regular connected graph will only have one largest eigenvalue d in its spectrum. Also, all
the other eigenvalue calculations would require us to treat diagonal and off-diagonal elements of
the adjacency matrix differently.

In addition, we would have to re-define the notion of a d-regular multi-graph. If loops counted
once, then a single node with a loop would constitute a 1-regular graph, in contradiction to corol-
lary 2.26 (p. 20) stipulating that odd-degree regular graphs must have an even node count.

We will propose a solution for both these problems in the subsection after next, but will continue
for now according to [ASS08] because the question of edge coloring has no bearing on the next
subsection.

3.5.2 Establishing the Expander Property of G(q, r)

The authors of [ASS08] prove a statement regarding the edge expansion of G(q, r), using the
spectral gap theorem 3.1 (p. 32). For this, we need the two largest eigenvalues of the adjacency
matrix. The largest one (λ1) should equal the graph’s degree (G(q, r) is regular). For G(q, r) to
be an expander, the second-largest eigenvalue needs to be smaller, i.e. λ2 < λ1.
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About the Eigenvalue Problem

The field Fr+1 has n := qr+1 elements that can readily be labeled to correspond to the integer
numbers 1 to n, which may serve as node indices for the eigenvalue calculations.

Like in the preliminaries chapter 2, the adjacency matrix A contains the connectivity data of
the nodes; thus, A ∈ Nn×n0 ⊂ Rn×n, and the eigenvectors of A will be from Rn.

Because of the underlying structure, every component of an eigenvector refers to a node index,
which (other than in chapter 2) corresponds to a vector in Fr+1.

Now, the determinant of Aλ would be quite unwieldy to calculate for large enough n (we recall
that n = (2t)r+1 = 2t(r+1)) – but we do not need the full spectrum of A. Alon et al. present
a way to solve the eigenvalue problem for the two largest cases using the original equation as in
definition C.1 (p. 100):

A · ~v = λ~v

We recall theorem C.10 (p. 102) which states that there is an orthogonal basis of Rn made up
of eigenvectors of A, because A is symmetric. This implies that if we find n mutually orthogonal
vectors that each satisfy the eigenvalue equation, all eigenvectors are accounted for.

Eigenvectors for A

We recall that the node indices for G(q, r) may be uniquely mapped to the vectors of Fr+1 and
vice versa; thus we may interchange an index a and its corresponding vector ~a as desired.

Definition 3.13 For some arbitrary but fixed surjective linear map L : F 7→ {0, 1}, and for a ∈
{1, · · · , n}, n := qr+1, q, r as in definition 3.11, a set of n vectors {~va}a is defined over their
respective components via

(~va)b = (~v~a)~b := (−1)L(
∑

j ajbj),

where the sum is taken over all j ∈ {0, 1, · · · , r}.

Note that the sum yields an element of F, not unlike a Euclidean scalar product.
The authors give an example for one such linear map, namely the map that retrieves the least

significant bit of a binary string in F. It is surjective because any field F = GF (2t) will contain
elements where the zeroth polynomial coefficient is 0 or 1 – in fact, exactly half of the elements
end with 0, the others with 1. This is true even for t = 1, the special case where no polynomials
are needed (cf. subsection E.3.4, p. 116).

For the following, two important properties of the (~va) are shown:

Corollary 3.14 Let ~a be one of the vectors from definition 3.13. Then, for b, c ∈ {1, · · · , n}:

(~va)(b+c) = (~va)b · (~va)c

Proof: We plug in the behavior specified in definition 3.13, and exploit the linearity of L, i.e.
L(αx+ βy) = αL(x) + βL(y):

(~va)(b+c) = (−1)L(
∑

j aj(bj+cj)) = (−1)L((
∑

j ajbj)+(
∑

j ajcj))

= (−1)L(
∑

j ajbj)+L(
∑

j ajcj) = (−1)L(
∑

j ajbj) · (−1)L(
∑

j ajcj)

= (~va)b · (~va)c �

Lemma 3.15 The vectors from definition 3.13 are mutually orthogonal.

Proof: First, we recall that the vectors are defined in Rn, so we may take any two such vectors and
calculate their Euclidean scalar product. Since none of the vectors can be zero, they are orthogonal
if (and only if) that product is zero. We therefore calculate

〈~va, ~vb〉 =

n∑
c=1

(~va)c · (~vb)c =
∑

~c∈Fr+1

(~v~a)~c · (~v~b)~c

We plug in the definition and use the linearity of L to calculate the sum terms:

(~v~a)~c · (~v~b)~c = (−1)L(
∑

j ajcj) · (−1)L(
∑

j bjcj) = (−1)(L(
∑

j ajcj))+(L(
∑

j bjcj))

= (−1)L(
∑

j(aj+bj)cj)
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If a = b, then aj = bj for all j, and because addition is carried out bitwise in the polynomial
coefficients: aj + bj = 0. But then L(0) = 0 because of the linearity of L, and all the sum terms
in the scalar product are (−1)0 = 1, leading to 〈~va, ~vb〉 = n > 0.

If, however, a 6= b, then there is a fixed vector ~d := ~a+~b, such that

(~v~a)~c · (~v~b)~c = (−1)L(
∑

j djcj) = (~v~d)~c

Thus:
〈~va, ~vb〉 =

∑
~c∈Fr+1

(−1)L(
∑

j djcj)

Because the sum is taken over all ~c in Fr+1, the exponent varies uniformly over {0, 1} (i.e. both
values occur equally often), which in turn means the sum terms vary uniformly over {−1, 1}, and
that the total sum is zero. Therefore, 〈~va, ~vb〉 = 0. �

Lemma 3.16 The vectors from definition 3.13 (p. 54) are eigenvectors of the adjacency matrix
A(G(q, r)).

Proof: The vectors are mutually orthogonal as per lemma 3.15. If each of them satisfies the
eigenvalue equation of A := A(G(q, r)), then the {~va}a constitute a complete set of eigenvectors of
A.

For any a ∈ {1, · · · , n}, we calculate the eigenvalue equation, and examine its b-th component:

(A · ~va)b =

n∑
c=1

Abc(~va)c

Now, the matrix element Abc can only be non-zero if there is an edge between the nodes ~b and ~c.
In order to get the sum over all possible such edges, we gather from definition 3.11 (p. 52) that we

have to consider all pairs (x, y) ∈ F2 for which ~c = ~b + y · ~px. We express this with a Kronecker
symbol (cf. definition A.15, p. 72):

· · · =
n∑
c=1

 ∑
(x,y)∈F2

δ~c,(~b+y·~px)

 (~va)c =
∑

~c∈Fr+1

 ∑
(x,y)∈F2

δ~c,(~b+y·~px)

 (~v~a)~c

We switch the sums and evaluate the Kronecker symbol, which fixes ~c to ~b+ y · ~px:

· · · =
∑

(x,y)∈F2

∑
~c∈Fr+1

δ~c,(~b+y·~px)(~v~a)~c =
∑

(x,y)∈F2

(~v~a)(~b+y·~px)

Using corollary 3.14 (p. 54), we obtain:

· · · =
∑

(x,y)∈F2

(~v~a)~b · (~v~a)(y·~px) =

 ∑
(x,y)∈F2

(~v~a)(y·~px)

 · (~v~a)~b =

 ∑
(x,y)∈F2

(~v~a)(y·~px)

 · (~va)b

Collecting all the components b yields the eigenvalue equation:

A · ~va =

 ∑
(x,y)∈F2

(~v~a)(y·~px)

 · (~va) =: λ~a · ~va �

Eigenvalue Gap and Conclusion

Lemma 3.17 For G(q, r) as in definition 3.11 (p. 52) and r < q, the second-largest eigenvalue of
A(G(q, r)) satisfies λ2 ≤ rq.

Proof (theorem 5 in [ASS08]): We continue from above and examine the expression for λ~a, with
the shorthand

p~a(x) :=

r∑
j=0

ajx
j =

r∑
j=0

aj(~px)j

Then:
λ~a =

∑
(x,y)∈F2

(~v~a)(y·~px) =
∑

(x,y)∈F2

(−1)L(
∑

j aj ·y·(~px)j) =
∑

(x,y)∈F2

(−1)L(y·p~a(x))
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The sum over x is split into two parts – one where pa(x) = 0, the other for non-zero pa(x):

· · · =

 ∑
x∈F

p~a(x)=0

∑
y∈F

(−1)L(y·p~a(x))


+

 ∑
x∈F

p~a(x) 6=0

∑
y∈F

(−1)L(y·p~a(x))




In the left-hand contribution, the inner sum is q times (−1)0 because p~a(x) is zero, therefore it
simplifies to q times the roots of the polynomial function p~a(x) in F.

For the right-hand contribution, we recall that a (and its corresponding vector ~a) is arbitrary
but fixed; so we may use the same argument as in the proof of lemma 3.15 (p. 54) – because the
sum in square brackets is over the whole field F and p~a(x) is fixed, L varies uniformly over {0, 1},
and the square bracket evaluates to zero. Thus:

λ~a = q ·
∑
x∈F

p~a(x)=0

1

Now, for ~a = (0, · · · , 0)T ∈ Fr+1, all terms of the sum p~a(x) = · · · are zero, so p~a(x) vanishes
for every of the q different x ∈ F; this makes for λ1 := λ~0 = q2. If ~a 6= ~0, the polynomial given by
p~a(x) is not the zero polynomial, but it may be reducible, i.e. it may have roots in F. Since it is
a polynomial of degree r, there cannot be more than r such roots because p~a(x) can only have up
to r factors of degree 1. Therefore the sum can have at most r terms, and λ~a ≤ rq; this holds for
all ~a 6= ~0, and, consequently, for all corresponding eigenvalues, including λ2.

According to our premise, r < q, so λ2 ≤ rq < q2 = λ1. �

Corollary 3.18 For G(q, r) as in definition 3.11 (p. 52) and r ≤ q
2 , G(q, r) is a [qr+1, q2, 1

4 ]-
expander.

Proof: Since r ≤ q
2 < q, we may employ lemma 3.17 (p. 55) and calculate an eigenvalue gap of

λ1 − λ2 ≥ q2 − q2

2
=
q2

2

Theorem 3.1 (p. 32) about the expander spectral gap then yields a lower bound for the graph’s
edge expansion (plugging in a degree of q2):

δ ≥ λ1 − λ2

2q2
≥ 1

4
�

(Corollary 2.38 (p. 24) confirms that such a graph is connected.)

3.5.3 Solving the Edge-Colorability Dilemma

We now return to the two problems outlined above, namely the existence of loops in the G(q, r)
graphs and the conflicting methods of counting and/or coloring those.

First, we observe that the problem would not occur if the edge function of G(q, r) (cf. defini-

tion 3.11, p. 52) were adapted to prevent any loops. We recall that ~a is connected to ~b if ~b = ~a+y~px
for some x, y ∈ F. In order for the eigenvalue problem to be calculated as in [ASS08], we note two
important characteristics:

• ~b should have an offset ~a so that corollary 3.14 (p. 54) can be used to separate the eigenvector
and pull it out of the sum so that the eigenvalue equation holds.

• (~b − ~a) should be linear in y for the simplification of the sums, where it reads “L varies
uniformly”. If we introduce additional contributions, this does no longer hold.

A second idea might be to restrict the range of (x, y) to F × (F \ {0}), which prevents any
loops in G(q, r) because y 6= 0. We could keep the eigenvalue calculation (with a small adaptation;
see the following subsection), but we would end up with a graph of degree q2 − q (and the same
number for its edge-colorability).

While this is O(q2), and even the expander property of corollary 3.18 could be maintained (in
fact, due to the smaller degree, δ would even be larger than 1

4 ), the following section requires degree
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and edge-colorability to be exactly q2 because the G(q, r) graphs are involved in two replacement
products (cf. definition 3.6, p. 37), where the degree of the left-hand factor’s graph must match
the node count of the right-hand factor’s.

Thus, the restriction of (x, y) alone cannot be sufficient – but it points us in a fruitful direction.
We recall that in G(q, r), every node has equally many loops. We may use this to define an
alternative graph G̃(q, r), constructed with the (x, y) restriction mentioned just now, and with q

2
loops added to every node afterwards. Using our notion of a loop’s contribution to the node degree,
this adds q to every node’s degree, and, consequently, to the entire graph’s degree, making G̃(q, r)
q2-regular.

This can always be done because q = 2t is even for any t ∈ N, so q
2 is integer. We will

demonstrate the adapted eigenvalue calculation in the following subsection; only a small change is
necessary.

Up to now, we do, however, remain with the problem of edge-colorability, which is (according to
our definitions) not possible if a graph contains loops. We propose to circumvent this problem by
making an ad-hoc exception only for the graphs G̃(q, r), and only under the condition that those
graphs occur as left-hand factors in a graph replacement product, which will have to be adapted
slightly, too, in order to reflect the properties of G̃(q, r). We will show, that such a product yields a
loop-free graph that is not only of the desired degree but may readily be used as factor in another
replacement product if so desired.

Adapted Graphs G̃(q, r)

Definition 3.19 For a given q = 2t, t ∈ N, F = GF (q) and r ∈ N, the graph G̃(q, r) can be
constructed as follows (remembering definition 3.11, p. 52):

1. Create qr+1 nodes identified by the vectors ~a ∈ Fr+1.

2. For any node ~a ∈ Fr+1, create edges between nodes ~a and ~b for any (x, y) ∈ F × (F \ {0})
satisfying

~b = ~a+ y · ~px, where ~px :=


1
x
x2

· · ·
xr


Color such edges with (x, y)

3. For any node ~a ∈ Fr+1, create q
2 bi-colored loops, carrying colors in consecutive pairs, i.e.

(0, 0) and (1, 0) for loop 1, (10, 0) and (11, 0) for loop 2, etc., up to (bin(q − 2), 0) and
(bin(q − 1), 0) for loop q

2 .

Corollary 3.20 The graphs G̃(q, r) from definition 3.19 are q2-regular and q2-edge-colorable (us-
ing an ad-hoc exception allowing for bi-colored loops).

Proof: Step 2 adds q2 − q edges and uses up as many edge colors (x, y), which is all those with
y 6= 0. Step 3 adds q

2 loops, i.e. q incident half-edges to each node, making each node’s degree q2,
which yields the stated graph degree.

Those q half-edges are colored with the remaining q colors (x, 0), x ∈ F. The ad-hoc exception
mentioned in the statement consists in allowing half-edges of different colors to be connected to
form a bi-colored loop. This is, of course, not a properly edge-colored graph, but, as we mentioned
before, the exception is only granted on the proviso that such a graph appears as left-hand factor
in an adapted replacement product (see below).

This procedure uses exactly the (q2− q) + q = q2 edge colors in F2 for every node, which makes
the graph q2-edge-colorable. �
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Adapted Replacement Product

Definition 3.21 For a q2-regular and q2-edge-colorable graph G̃(q, r) as per definition 3.19 with
qr+1 nodes, and a d-regular graph H with q2 nodes, the replacement product G̃(q, r) ◦H obtained
by the following procedure:

1. For any node ~a ∈ Fr+1 of G̃(q, r), let H~a be a copy of H with nodes k~a ∈ F2, and with all
the edges of H reproduced in each copy.

2. For all edges of G̃(q, r) with color (x, y) ∈ F × (F \ {0}), between nodes ~a and ~b 6= ~a, add a
d-fold multi-edge between the nodes k~a := (x, y) and k~b := (x, y) in the copies H~a and H~b.

3. For all nodes ~a ∈ Fr+1 and all their respective bi-colored loops in G̃(q, r) with color pairs
(c1, c2) ∈ (F × {0})2, add a d-fold multi-edge between the nodes k~a = c1 and k~a = c2 in the
copy H~a.

4. G̃(q, r)◦H consists of all the nodes in the qr+1 copies of H, with the connectivity as described
in the previous three steps.

Corollary 3.22 A graph G̃(q, r) ◦H as in definition 3.21 is (2d)-regular. It is loop-free if H is.

Proof: Steps 1 and 2 are covered by corollary 3.7 (p. 37); thus, all the nodes (x, y) with y 6= 0 have
degree (2d), for every copy H~a.

Step 3 adds d-fold multi-edges between nodes of different internal indices c1 6= c2 within copies
H~a. Those nodes were not affected by step 2, and they are different by virtue of the construction
of G̃(q, r). There are q

2 pairs of such nodes, and they each are incident with an additional d-fold
multi-edge after step 3.

Thus, every node of G̃(q, r) has degree 2d after step 3.
If H is loop-free, step 1 creates a loop-free graph. All the loops of G̃(q, r) are bi-colored and

are used to add d-fold multi-edges in copies of H with different node indices (determined by the
relevant loop’s two colors). As per the construction of G̃(q, r), the two colors of such loops are
never equal; thus, neither are the nodes connected in step 3. �

Example for the Adapted Replacement Product

Because the G̃(q, r) are large graphs, we choose to present a simpler example to illustrate the
adapted replacement product from above, namely a 5-regular bipartite graph G with some bi-
colored loops, and the cycle graph C5. We would like to point out that this is not a permitted
exception to the notion of edge-coloring, and is only to serve as a demonstration of the principles
in definition 3.21. The graphs G and H are shown in figure 3.13, and the resulting product in
figure 3.14 (both: p. 59).

We observe that the product is 4-regular and loop-free, as expected from the above. When
creating an edge-coloring for the bipartite graph G, it is important that the multiplicities of the
colors in loops match on for each node class: Creating a loop on a color-1 node takes away two edge
colors, say (a and b), which will not feature in edges to a color-2 node. Therefore, some color-2
nodes need to have incident half-edges colored a and b belonging some loops (not necessarily the
same one), too, so that edges to color-1 nodes with those colors are missing there as well. This
informs why we enforced a rigid coloring scheme for the loops in the G̃(q, r) definition above.
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Figure 3.13: A 5-regular bipartite graph with bi-colored loops G (left) and H := C5 (right, short-
hand)

Figure 3.14: G ◦H
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Adapted Eigenvalue Problem

We show that the eigenvalue problem solved in lemmas 3.16 (p. 55) and 3.17 (p. 55) needs only a
small adaption to reflect the new graphs G̃(q, r).

Lemma 3.23 The eigenvalues and eigenvectors of A(G̃(q, r)) are identical to those calculated for
G(q, r) in lemmas 3.16 and 3.17.

Proof: We split the sum occurring in the left-hand side of the eigenvalue equation into two parts:

(A · ~va)b =

n∑
c=1

Abc(~va)c =

 ∑
c∈{1,··· ,n}\{b}

Abc(~va)c

+Abb(~va)b

Abb contains the number of half-edges belonging to loops, which is q = 2 · q2 . The vector component
outside the bracket is already of the desired form for the right-hand side of the eigenvalue equation.

We now deal with the sum in brackets. Here, the vectors ~b and ~c are different, so the matrix
elements Abc are the sum of non-loop edges incident at ~b. As above, those sums can be determined
by considering all pairs (x, y) ∈ F2 with a Kronecker delta. There is no need to restrict y at this
point because the contribution c = b is not part of the outer sum. Evaluating the sum over c with
the Kronecker delta, then, yields the y restriction:

(
· · ·

)
=

∑
x∈F

y∈F\{0}

(~v~a)(~b+y·~px) =

 ∑
x∈F

y∈F\{0}

(~v~a)(y·~px)

 (~va)b

Combining these results yields:

A · ~va =

q +
∑
x∈F

y∈F\{0}

(~v~a)(y·~px)

 · ~va =: λa · ~va

Using the same polynomial abbreviation p~a(x) as in lemma 3.17, we have:

λa = q +
∑
x∈F

y∈F\{0}

(−1)L(y·p~a(x))

In order to exploit the uniformity of the values for L, it is desirable to sum y over the whole of
F, including 0, such that all binary patterns occur in positive and inverted form; otherwise the
symmetry argument would not work. We therefore subtract and add the contributions y = 0:

λa = q +

 ∑
(x,y)∈F2

(−1)L(y·p~a(x))

−∑
x∈F

(−1)L(0·p~a(x))

Now, the sum outside the bracket is just q times (−1)0, which cancels the q before the bracket,
and leaves us with exactly the same expression as in the proof of lemma 3.17 – which in turn yields
the same observations on the eigenvalues (including the edge expansion as stated in corollary 3.18,
p. 56). �

Therefore, we may use the graphs G̃(q, r) instead of G(q, r) for the following deliberations.

3.6 Constructing a Constant-Degree Expander in Polyno-
mial Time

We now combine all the previous results to show that it is possible to construct expander graphs
in polynomial time (i.e. regarding their final node count).

The first step (as outlined in [ASS08] (theorem 4)) is to search for a basic expander like described
in section 3.4 (pp. 47ff.). This may seem counterintuitive at first glance, because the strategies
from that section already yield expanders with constant degree (which is just the number of edge
colors) – that is, until we recall that the algorithm is randomized, so there is no control over the
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resulting graph’s expansion parameter. If we aim for a certain threshold for δ in our expander,
we are not only forced to repeat the process until a satisfactory graph has been found, but, more
crucially, we have to calculate the isoperimetric constant for every graph. Since we cannot presume
any symmetries, we have to check all possible partitions for their count of connecting edges – this
takes exponential time.4 This quickly becomes infeasible for large enough node count.

On the other hand, the graphs G̃(q, r) from the preceding section can certainly be made very
large, and even satisfy δ ≥ 1

4 – but their degree is dependent on the node count and therefore not
constant.

Alon et al. propose to combine the two scenarios by using the replacement product twice – we
will show that one such product would not be sufficient for the desired polynomial construction
time, and motivate their choice of parameters.

Finding an Initial Expander H

Since the replacement product will have twice the degree of its right-hand factor, it is not necessary
to start with a high degree, particularly when anticipating that two such products will be necessary.
The minimum degree of any “serious” expander is three, because a (connected) degree-2 expander
would just be a big cycle graph, with poor δ.

Because H is going to be a right-hand factor of a replacement product, its node count is tied
to the future left-hand factor’s degree (and edge-colorability). The G̃(q, r) have degree q2; thus,
the authors of [ASS08] recommend searching for a 3-edge-colorable [q2, 3, δH ]-expander H with a
suitable value of δH . We recall from above that q = 2t for some integer t. Since q2 is always even,
the remarks of section 3.4 apply, and we may find such a graph in exponential time, regarding its
size:

Lemma 3.24 For q = 2t, t ∈ N, and some value δ, a 3-edge-colorable [q2, 3, δH ]-expander H can

be found in time qO(q2).

Proof: We provide a rough estimation. As we pointed out above, an isoperimetric check will cost
2q

2

steps. Because we cannot expect to hit upon a suitable expander on the first attempt, this
number will be multiplied with some fraction of the number of possible 3-edge-colored 3-regular
graphs, which is of order ((q2)!)3.

We use Stirling’s formula ([K+88]) to estimate (q2)! is of order q · (q2)q
2

= q1+2q2 .

Combining this, we obtain a construction time of order 2q
2 · q3(1+2q2) = qO(q2). �

Applying the First Replacement Product

Lemma 3.25 Given a 3-edge-colorable [q2, 3, δH ]-expander H for some q = 2t as in lemma 3.24,
one replacement product G1 := G̃(q, r1)◦H, with an expander G̃(q, r1) for some r1, will not suffice
to ensure a construction time polynomial in the node count of G1.

Proof: We choose an integer r1 ≤ q
2 in order to ensure that G̃(q, r1) is a [qr1+1, q2, 1

4 ]-expander,
recalling corollary 3.18 (p. 56).

Theorem 3.10 (p. 42) then stipulates that the product graph G1 is a [qr1+3, 6, δ1]-expander. Its
node count is of order qr1 , and since r1 ≤ q, this yields qO(q).

But poly(qO(q)) is less than qO(q2), which could only be reached by an additional exponentiation
with O(q), not a polynomial of qO(q). �

Parameter Considerations, and the Second Replacement Product

Because of lemma 3.25, we will endeavor to take a second replacement product, with a graph
G2 := G̃(q2, r2) ◦ G1. Since G̃(q2, r2) is to be a [qr2+1

2 , q2
2 ,

1
4 ]-expander, the replacement product

requires that q2
2 = qr1+3, which can be used to fix a value for r1.

Before that, we formulate our aim: If the node count of G̃(q2, r2) is of order qpoly(q2), bounded

in both directions, then the lower bound ensures that qO(q2) is at most polynomial in that node
count, and cannot be worse than polynomial in the node count of the final graph G2 (which we
rename later). If we can meet this aim with a choice of parameters, just two replacement products,
applied to H, are sufficient – which in turn ensures that the initial expansion parameter of H,
while greatly reduced, does not become infinitesimal.

4If we just were interested in connectedness, i.e. δ > 0; this could be checked in linear time using depth-first or
breadth-first search.

61



Now, G̃(q2, r2) has qr2+1
2 nodes, and if is to be an expander as stated above, r2 ≤ q2

2 . We recall
from above that

q2
2 = qr1+3 ⇒ q2 = q

r1+3
2 ,

which allows for any odd integer r1. The first solutions are:

• r1 = 1 ⇒ q2 = q2

• r1 = 3 ⇒ q2 = q3

• r1 = 5 ⇒ q2 = q4

If we fix r2 to be of order q2 (in both directions), then the node count of G̃(q2, r2) is bounded
in both directions by (

q(r1+3)/2
)q(r1+3)/2

= q(
r1+3

2 ·q(r1+3)/2)

Now, since q2 is only linear in q2, and q3 is not an integer power of q2, the first safe and
aesthetically pleasant choice would be q2 := q4. Thus, we fix

r1 := 5; q2 := q4; p · q4 ≤ r2 ≤
q4

2
with p <

1

2
allowing for some integer choices for r2

This in turn means that G̃(q, r1) = G̃(q, 5) is of type [q6, q2, 1
4 ], and that G̃(q2, r2) = G̃(q4, r2)

is a [q4r2+4, q8, 1
4 ]-expander.

We observe that corollary 3.18 (p. 56) states that G̃(q, 5) has expansion of at least 1
4 if 5 ≤ q

2 ,
so q = 2t with t ≥ 4.

We may relax this to 5 < q, i.e. t ≥ 3 due to lemma 3.17 (p. 55). In the latter case, G̃(q, 5) still
has positive edge expansion, but no longer with a constant lower bound. If we only demand that
r1 < q, the second-largest eigenvalue will be λ2 ≤ q2 − q, which leads to an eigenvalue gap of, not

at least q2

2 , but of at least q, and consequently an expansion of at least 1
2q2 . In the border case

q = 8, this yields a lower bound of 1
128 for the expansion parameter.

We also observe from this example the following

Corollary 3.26 The replacement product from definition 3.6 (p. 37) is not associative; nor is the
adapted product from definition 3.21 (p. 58).

Proof: By counterexample. In the above remarks, we construct

G2 := G̃(q4, r2) ◦G1 = G̃(q4, r2) ◦
(
G̃(q, 5) ◦H

)
However, the product (G̃(q4, r2) ◦ G̃(q, 5)) is not defined because the left-hand graph is of degree
q8, but the right-hand one’s node count is only q6 6= q8. Thus, we may not change the brackets,
i.e. the order of product calculations. �

We close our observations by stating that G1, as per the above, will be a [q8, 6, δ1]-expander,
and G2, a [q4r+12, 12, δ2]-expander.

Final Statement

All the previous results lead to theorem 4 of [ASS08] (modified to include our restriction of t):

Theorem 3.27 There is a 0 < δ < 1 such that for any integer t > 2, q := 2t, and any integer r
satisfying

q4

100
≤ r ≤ q4

2
,

there is an expander E of type [q4r+12, 12, δ] that can be constructed in polynomial time (regarding
its node count). E can be designed to be 12-edge-colorable.

Proof: The statement combines the contents of this section. E is just a re-labeled G2:

E := G̃(q4, r) ◦
(
G̃(q, 5) ◦H

)
,
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for some 3-regular and 3-edge-colorable expander H of type [q2, 3, δH ] as described above. Because
all factors of the replacement products involved in the construction are edge-colorable with exactly
as many colors as the graph’s respective node counts, by virtue of corollary 3.8 (p. 37), the same
applies to the final graph E from theorem 3.27: it is 12-regular and 12-edge-colorable.

Alon et al. also point out that the construction of the G̃ graphs requires time because represen-
tations of GF (q) = GF (2t) and GF (q4) = GF (24t) need to be found. This requires a search for
irreducible modulus polynomials of degree t and 4t, respectively. However, the number of possible
polynomials of such degrees is bounded by the respective field sizes; even the naive brute-force
method from section E.3 is benign in that respect. Building the multiplication tables is also bound
by the field sizes, such that all this effort is negligible compared to building the vector spaces over
the respective fields (which itself is linear in the node respective counts, and therefore subsumed
in polynomial order of E’s node count). �

3.7 Specializations

3.7.1 Narrowing the Node Count

Theorem 3.27 (p. 62) established that 12-regular, 12-edge-colorable expanders of type [q4r+12, 12, δ]
exist for integer t > 2 and q := 2t, and can be constructed in polynomial time regarding their node
count. We now present a method by Alon et al. to construct 12-regular and 12-edge-colorable
expanders with node count Θ(n)5 for any given n that is sufficiently large, using the construction
from the theorem.

First, we define sets of integers that can be exact node counts for the graphs constructed in
theorem 3.27, for t ∈ N:

Nt :=

{
q4r+12

∣∣∣∣q = 2t ∧ r ∈ N ∩
[
q4

100
,
q4

2

]}
If we recall the restriction t > 26, this means that the available node degrees are⋃

t>2

Nt

The smallest of these is

minN3 = 84 84

100 +12 ≈ 6.3 · 10158

(For t ≥ 2, we would have obtained minN2 ≈ 2.5 · 1013)
We now show that the intervals covered by the Nt sets have no gaps for t > 1 (which is satisfied

anyway since we demand t > 2); thus, all the possible node counts in question lie in some Nt. For
this, we demonstrate that maxNt > minNt+1, remembering that 2q = 2t+1

maxNt = q4 q4

2 +12 = (2t)2q4+12 = 2t(2q
4+12)

minNt+1 = (2q)4
(2q)4

100 +12 = (2t+1)
64
100 q

4+12 = 2(t+1)·( 64
100 q

4+12)

Because the exponential function is strictly monotonous, and increasing for positive base, it is
sufficient to compare the exponents:

t(2q4 + 12)− (t+ 1) ·
(

64

100
q4 + 12

)
= q4

(
2t− 64

100
t− 64

100

)
+ (12t− 12t− 12)

= q4

(
136

100
t− 64

100

)
− 12

For t = 1 this expression yields 16 · 72
100 − 12 = 1152

100 − 12 < 0, but for t = 2 the factor q4 = 24t

already dominates. The bracketed term becomes negligible because it is larger than 1 but only
linear in t, and the expression is larger than (256− 12) > 0.

Thus, for t ≥ 2 (and certainly for t > 2), maxNt > minNt+1.
(We observe that the overlap of the Nt sets depends on the lower bound of r, and may retroac-

tively motivate the choice of q4

100 , which appeared somewhat arbitrary in theorem 3.27 (p. 62).)

5This means that the actual node count is bounded in both directions by numbers linear in n
6The authors of [ASS08] do not restrict t in the theorem and therefore continue here with t ≥ 2
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Consequently, for n ≥ minN3, there is some t > 2 for which n ∈ [minNt,maxNt]. For this t,
we obtain a q := 2t and a range for possible r values. We choose r0 to be the one satisfying

q4r0+12 ≤ n ≤ q4(r0+1)+12 = q4 · q4r0+12

Dividing the right-hand inequality by q4 yields

n

q4
≤ q4r0+12 ≤ n (*)

We define the node count for an expander E0 according to theorem 3.27 with those values for q
and r0 as

n0 := q4r0+12

The right-hand inequality in (*) yields n0 = O(n). If q4 were constant (most importantly: inde-
pendent of n), then n0 would also be Ω(n), and thus Θ(n).

As q certainly depends on n, we must fix the lower bound in another way. Alon et al. distinguish
two cases:

• Either n0 ≥ n
32 ; then we do have a lower bound linear in n. An expander E0 constructed

according to theorem 3.27 with n0 nodes is acceptable because n0 = Θ(n).

• Or n0 <
n
32 , meaning that we will have to exploit the left-hand inequality in (*), which reads

n ≤ q4 · n0, in some way in order to fix a lower bound for the expander node count.

We construct E0 anyway, but will modify it in a way that the resulting expander indeed has
node count Θ(n).

First, we define a ratio

% :=

⌊
1

16

n

n0

⌋
< q4,

where we have used (*) for the upper bound.

We now find a 6-edge-colorable, 6-regular expander H of type [12%, 6, δH ]. Since % < q4,

lemma 3.24 (p. 61) ensures this can be done brute-force in time qO(q4) (the different degree
only accounts for a constant factor in the exponent).

Since the expander E0 satisfies r0 >
q4

100 , its node count n0, which is larger than q4r0 , is also

larger than qq
4/25; thus, finding H can be achieved in time poly(n0).

Now, from E0 we construct an expander G of type [n0, 12%, δG] by replacing each of E0’s
edges with %-fold multi-edges (which, of course affects the expansion parameter). Because
E0 was 12-edge-colorable, G is 12%-edge-colorable.

We construct the final expander E as a replacement product: E := G ◦H, which is of type
[12% · n0, 12, δ].

Defining m := 12% ·n0, we now show that m = Θ(n); if so, then E satisfies our requirements.

In fact, according to the definition of %, we obtain

m = 12% · n0 =

⌊
3

4
n

⌋
,

which readily yields
n

2
≤ m ≤ n,

so m is indeed in Θ(n).

3.7.2 Expanders with Smaller Degree

The expanders described in theorem 3.27 (p. 62) are 12-regular and 12-edge-colorable.
In order to obtain an expander with smaller degree, the authors of [ASS08] recommend calcu-

lating a replacement product E ◦ G with an expander G of type [12, d, δG], which is well-defined.
Since E is loop-free, the original replacement product from definition 3.6 (p. 37) is sufficient here.

The result will be a 2d-regular graph, according to corollary 3.7 (p. 37), and will be 2d-edge-
colorable as per corollary 3.8 (p. 37) if G is d-edge-colorable.

If an odd degree (2d − 1) is desired, we can use the d-regular graph G, but only add (d − 1)
instead of d multi-edges in step 2 of the replacement product. For d ≥ 2, this will still yield
a connected graph because at least one edge is added for each node pair in step 2; thus, the
connections between the various copies Gj (replacing the nodes of E) will be established.
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Chapter 4

Conclusion

We have introduced the necessary requirements to understand the nature of regular expander
graph. In our main chapter, we have presented and motivated most of the work in [ASS08], which
gives a concise way to construct expander graphs of various node counts but with fixed degree.

Several concepts that the authors declare “easy to see” have required quite a few intermediary
steps to make them accessible to the interested reader not versed in advanced combinatorics and
(spectral) graph theory.

We do, however, appreciate that Alon et al. have offered proofs for all their assertions (perhaps
with the exception of theorem 2 [ASS08], for which we have provided a motivation of our own),
and that in a matter of this complexity, not everything can be expressed in the confines of an
eight-page article.

We have adapted the special expander graphs LD(q, r) and the replacement product presented
in [ASS08] to conform to the notions of loops, node degree and edge-colorability as introduced in
our preparatory chapter 2, with a limited exception to corollary 2.17 (p. 14) by way of bi-colored
loops. The spectral and expansion properties are not affected by those changes.

At some points, we have changed notation in the hope for greater clarity and consistency with
chapter 2, and we have provided several illustrations in order to demonstrate or motivate certain
concepts, like e.g. the replacement product.

An extensive appendix provides mathematical prerequisites that are (or, at least, could be)
taught in undergraduate maths education for the sciences, but may not feature in every interested
reader’s later work. While we tried to be thorough, we had to leave some gaps (for instance, a true
understanding of Galois fields would require substantial preparations in algebra). The appendix
has also served as a central mathematical reference for most of the calculations in the previous
chapters.
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Appendix A

Mathematical Basics

A.1 About the Mathematical Background

We begin this appendix with a chapter on basic algebraic structures which are helpful for a con-
sistent formulation of the actual mathematical concepts we want to explain. Some initial rigidity
will therefore unavoidable, yet we will try to avoid formal detail where it does not greatly improve
clarity.

For example, while we want to mention the special linear group SL, we will omit the notion
of normal subgroups. And although we need the concept of a finite field for some aspects in the
above thesis, we will not elaborate on Galois theory, the uniqueness of Galois fields or the notions
of algebraic closure. Also, we will concentrate on real vector spaces instead of complex ones where
possible. Some notational hand-waviness related to residue classes and their representatives will
be explained and motivated in the relevant section on residue rings.

After the algebraic vocabulary is established, we will summarize some important results from
linear algebra.

The aim of this appendix is to make the thesis accessible to anyone with undergraduate-level
mathematical education. Some space (not only in this chapter) is devoted to the treatment of
matrices and linear algebra, which may be redundant for those familiar with higher mathematics.

All the statements collected here can be verified using textbooks of (linear) algebra. If a
statement is denoted “claim”, this suggests a more involved proof. Proofs of “theorems” are only
adapted from literature, and we refer to the original. Some of the “smaller” statements (lemmas)
are also adapted from literature proofs.

This chapter uses definitions from [Hof14, KM21, K+88] and attempts to achieve a good com-
promise on brevity and completeness.

A.2 Algebraic Structures, with Simple Examples

Sets of objects are among the most fundamental structures in mathematics because they allow us
to group similar objects together. The behavior of such elements can be described with maps, i.e.
instructions that define which object(s) an object (or several objects) is (are) connected to.

An algebraic structure combines a set of objects with one or more maps that describe either in-
ternal operations (connecting elements within the set) or external operations (connecting elements
from the set and elements from other sets).

A magma is a simple example of an algebraic structure, combining a set of objects with an
internal connection that is closed – any two elements of the set map to some element of the same
set. In the following, we develop a cascade of restrictions to obtain algebraic structures with higher
specification that will allow for more detailed reasoning.

A.2.1 Groups

Definition A.1 The pair (G, ◦), with a set G of objects and a binary operation ◦ : G×G→ G is
called a semigroup if it satisfies:

G1: ∀a, b ∈ G : a ◦ b ∈ G (closure of G under ◦)

G2: ∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c (associativity of ◦)

66



Example: the positive integers N under the addition +.

Definition A.2 A semigroup (G, ◦) is called a monoid if G contains an identity element e, such
that

G3: ∀a ∈ G : e ◦ a = a ◦ e = a

Examples:

• the non-negative integers N0 under the addition +, with the identity element 0

• the integers N (or N0) under multiplication, with the identity element 1

• square matrices from Rn×n under matrix multiplication (cf. the following section on linear
algebra for details on matrices), with the identity element 1n = diag(1, . . . , 1) (the unit
matrix with n entries of 1 on its diagonal)

Note that the identity is unique, because if there were another element e′ satisfying G3, then

e = e ◦ e′ = e′,

where we use G3 for e′ in the first equality, and G3 for e in the second.

Definition A.3 A monoid (G, ◦) is called a group, if it satisfies the additional constraint

G4: ∀a ∈ G : ∃a−1 ∈ G : a ◦ a−1 = a−1 ◦ a = e

The group is called commutative (or Abelian) if all elements a, b of G satisfy

a ◦ b = b ◦ a

Examples:

• the integers Z under the addition. The inverse element of a is −a.

• the rational, real and complex numbers (Q, R, C) under addition. The inverse element of a
is −a.

• the rational, real and complex numbers (Q, R, C), each without 0, under multiplication. The
inverse element of a is (1/a).

• invertible square matrices from Rn×n under matrix multiplication. Unlike the prior examples,
this group is not Abelian, because matrix multiplication is not generally commutative. This
group is also called the general linear group GL(R, n) and will be briefly mentioned again in
the first algebra chapter, after the notion of inverse matrices has been introduced.

Note that for any element a of a group, its inverse a−1 is unique, because if there were another
element b satisfying G4, then

b = b ◦ e = b ◦ (a ◦ a−1) = (b ◦ a) ◦ a−1 = e ◦ a−1 = a−1,

where we use the following sequences of the group axioms for the equalities: G3, G4 for a−1, G2,
G4 for b, G3.

Definition A.4 A group (G̃, ◦̃) is called a subgroup of (G, ◦), if G̃ ⊂ G and if ◦̃ is the restriction
of ◦ to G̃.

Examples: Because Z ⊂ Q ⊂ R ⊂ C, all the subset relations imply subgroup relations under addi-
tion. For all of the above sets but Z, taken without {0}, there are also subgroup relations under
multiplication.

Note that the identity e of G is also the identity of G̃, because any a in G̃ is also in G, and
therefore can be (according to G3 for G) combined with e from G to yield a itself – which satisfies
G3 for G̃ as well. Since the identity is unique in G̃, too, it cannot be another element than e from
G, or G would contain two different identities.
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A.2.2 Rings and Fields

While groups only consider a single operation linking elements of a set, there are plenty of cases
where two operations are defined; often these are addition “+” and multiplication “·”. Rings and
fields combine a set with two such operations, and we will use the above symbols for the operations.

Definition A.5 A triple (R,+, ·), where R is a set of objects, and the operations + and · connect
via +, · : R×R→ R, is called a ring if it satisfies the following conditions:

R1: (R,+) is an Abelian group, with identity element 0

R2: (R, ·) is a semigroup

R3: · distributes with respect to +, i.e. ∀a, b, c ∈ R :

a · (b+ c) = (a · b) + (a · c)
(a+ b) · c = (a · c) + (b · c)

If (R, ·) is a monoid, i.e. if R contains the identity of the multiplication, then (R,+, ·) is called a
ring with unity.
If the multiplication is commutative, (R,+, ·) is called a commutative ring.

Examples:

• (Z,+, ·) is a commutative ring with unity, the identities are 0 (for +) and 1 (for ·). The same
holds for Q, R and C, respectively.

• (Rn×n,+, ·) with the matrix multiplication for “·” is a ring with unity, but not a commutative
ring.

Note that for commutative rings, the two distributive laws in R3 amount to the same.
If we constrain the notion of a commutative ring with unity even further, we obtain the definition

of a field:

Definition A.6 A triple (F,+, ·) is called a field if it is a commutative ring with unity, and every
element a ∈ F \ {0} has a non-zero multiplicative inverse in F . We denote the identity element of
multiplication with 1 ( 6= 0).

Examples: The number sets Q, R and C with the usual addition and multiplication (the integers
Z do not form a field because they do not contain multiplicative inverses except for ±1).

In the following, we will use those labels for both the actual number sets as well as for the
associated fields with the usual arithmetic operations. We will use the same approach for other
fields or rings when the relevant operations can be inferred easily from context.

We will elaborate on finite fields in the final chapter of this appendix.

Note that, for a field F , (F \{0}, ·) is, per the above definition, an Abelian group. Together with
the Abelian group (F,+), this means that fields allow for all the four basic arithmetic operations.
Subtraction is defined by adding the additive inverse of an element, and division by multiplying
its multiplicative inverse, respectively.

A.2.3 Vector Spaces

Fields allow for basic arithmetic between what we can represent as numbers. The following intro-
duces vector spaces, which combine such numbers with new entities – called vectors – that may
carry additional structure.

In anticipation of the Euclidean space we write most vectors as Latin letters with an arrow, as
is common in Physics or Engineering (many mathematical textbooks instead use boldface Latin
letters or the Fraktur script).

Definition A.7 Given a field F, a triple (V,+, ·), where V is a set of objects, and the operations
+ and · connect via + : V ×V → V and · : F×V → V , is called a vector space over F if it satisfies
the following conditions:

V1: (V,+) is an Abelian group, with ~0 as the identity element (the zero vector)
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V2: ∀a, b ∈ F, ~v, ~w ∈ V :

(a+ b) · ~v = (a · ~v) + (b · ~v)

a · (~v + ~w) = (a · ~v) + (a · ~w)

(ab) · ~v = a · (b · ~v)

1 · ~v = ~v

The operation + is called vector addition, while · is called scalar multiplication. The elements of
F are called scalars.

Examples: Beside the Euclidean space which we will introduce in the next subsection, there
are many spaces where the vectors are functions, like the space of continuous functions, or the
Schwartz spaces, which are studied e.g. in functional analysis or harmonic analysis.

Note that V2 explains why the elements of the field F are called scalars – they can be used to
scale the vectors in V . Plugging 1 ∈ F in for both a, b in the first equation (and assuming that the
element representing 1 + 1 in F is 2), we obtain 2 ·~v = (1 · v) + (1 · v), which yields ~v+~v according
to the fourth equation. So, if we scale the vector with a number 2, the result is the vector added
to itself.

Plugging 1 and 0 from F in for a and b in the first equation, we obtain (again using the fourth
equation): ~v = ~v + (0 · ~v). This equation can only hold if 0 · ~v equals the zero vector mentioned in
V1.

We should point out that the + in the left-hand side of the first equation in V2 is the addition
operation of the field F, not the one specified in the triple (V,+, ·). Also, the product inside the
brackets on the l.h. side of the third equation uses the field’s multiplication operation.

Since V2 is postulated in order to achieve consistency between the two multiplication opera-
tions, we will label them with the same symbol from here on (the specific operation can be inferred
from context if desired), or dispense with the · altogether in products, e.g., write a~v instead of a·~v.

In addition, note that any field F is also a vector space over itself. The operations + and ·, in
this case are the same for the field and for the vector space, and the zero vector equals 0 ∈ F. The
conditions in V2 bring no new information here, because they translate into the distributive laws
of any ring, the associativity of multiplication and the existence of a multiplicative identity in a
ring with unity, which F satisfies by itself.

However, we will presently encounter vector spaces that are (in a simple way) constructed from
fields while not being fields themselves. The main reason for this is that while fields demand a
commutative multiplication operation (with full group structure) amongst their member elements,
vector spaces do not. The product · of the vector space is only used for scaling vectors.

A.2.4 Euclidean Space

As mentioned above, vector spaces per se do not stipulate any product between vectors. Many
vector spaces do, however, allow for products of various kinds (e.g. tensor product, cross product).
There is even a whole class of vector spaces called “inner product spaces” (a.k.a. pre-Hilbert spaces)
that feature, not surprisingly, an inner product, which maps a pair of vectors to a number from
the field that the space is defined over.

For our purposes, we restrict ourselves to real vector spaces and make use of the following
concept:

Definition A.8 A vector space V over the field R is called Euclidean space if it is combined with
a scalar product, a map 〈·, ·〉 : V × V → R with the properties (∀~u,~v, ~w ∈ V ; a, b ∈ R):

S1: 〈~v, ~w〉 = 〈~w,~v〉 (Symmetry)

S2: 〈a~u+ b~v, ~w〉 = a〈~u, ~w〉+ b〈~v, ~w〉 (Linearity in the first argument)

S3: ~v 6= ~0⇒ 〈~v,~v〉 > 0 (Positive-Definiteness)

See the following section for examples.

Note that S1 and S2 can be combined to show that the scalar product is also linear in the
second argument: 〈~u, a~v + b~w〉 = 〈a~v + b~w, ~u〉 = a〈~v, ~u〉 + b〈~w, ~u〉 = a〈~u,~v〉 + b〈~u, ~w〉. The scalar
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product is in fact bilinear.

We should point out that the arrow notation suggests vectors in the sense of physical coordi-
nates; this was again done in anticipation of the next section on linear algebra. However, it is also
possible to define a scalar product for other spaces, e.g. between the wave functions in quantum
mechanics, or the sine/cosine functions in harmonic analysis.

A.3 Linear Algebra Recap

In this section we focus on vectors in n-dimensional Euclidean space. We will also introduce
matrices and examine their interplay with vectors, which is important groundwork for the later
chapter on the Eigenvalue problem.

A.3.1 The Euclidean space Rn

Rn (n ∈ N) is the n-fold Cartesian product of real numbers; its elements are n-tuples of reals.
In order to build this set into a vector space, the first thing we require is the addition operation.

For reasons that will become apparent when we introduce matrices, we denote the tuples not
horizontally but vertically.

Definition A.9 For ~v, ~w ∈ Rn, with components v1, · · · , vn and w1, · · · , wn, respectively, the
vector ~v + ~w is defined per

∀j ∈ {1, · · · , n} : (~v + ~w)j := vj + wj ,

where the + operation on the right-hand side is just the standard addition of real numbers.

The zero vector ~0 of Rn is the vector comprising n components of value 0.

(When the number of components can be easily inferred from context and where it does not cause
confusion, we will henceforth omit the interval specification and only write ∀j.)

Written out a bit more completely, this reads:

~v + ~w =


v1

v2

· · ·
vn

+


w1

w2

· · ·
wn

 :=


v1 + w1

v2 + w2

· · ·
vn + wn


With the component-wise addition, the vectors in Rn constitute an Abelian group, as demanded

in the axiom V1 of the vector space definition, because the various single components form an
Abelian group in the field R.

In the same fashion, we define the scalar multiplication component-wise:

Definition A.10 For ~v ∈ Rn, a ∈ R, the scaled vector a~v is defined per

∀j : (a~v)j := a · vj

Or, alternatively:

a~v =


(a~v)1

(a~v)2

· · ·
(a~v)n

 :=


a · v1

a · v2

· · ·
a · vn


With this component-wise scaling and the addition operation from above, all the requirements

stated in axiom V2 of the vector space definition are easily met, because the equations can be
evaluated component-wise.

Like we understand R as either the set or the field of real numbers, respectively, depending on
the context, we will in the following understand Rn as either the n-fold Cartesian product of real
numbers or the vector space (over R) constructed with the component-wise addition and scalar
multiplication.

In order to justify this subsection’s heading, we still need to define a scalar product (not to be
confused with the scalar multiplication!):
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Definition A.11 For ~v, ~w ∈ Rn, the canonical scalar product is defined per

〈~v, ~w〉 :=

n∑
j=1

vj · wj

(We will omit the summation range in the future, whenever the intended range can be easily
inferred.)

Since the multiplication of reals is commutative, this product is symmetric, satisfying S1 of the
above axioms.

We demonstrate the linearity demanded in S2:

〈(a~u+ b~v), ~w〉 =
∑
j

(a~u+ b~v)j · wj =
∑
j

(auj + bvj)wj =
∑
j

[(aujwj) + (bvjwj)]

We split the sum into two (which is allowed because addition of reals is associative) and pull the
factors a and b out of the sums:

· · · =
∑
j

(aujwj) +
∑
j

(bvjwj) = a
∑
j

(ujwj) + b
∑
j

(vjwj) = a〈~u, ~w〉+ b〈~v, ~w〉

For the third axiom S3 of scalar products, we note that 〈~v,~v〉 evaluates to the sum of the
squares of the vector’s components. For real numbers, such a square is never negative, and the
whole sum can only be zero if all the squares (and therefore the components) are zero.

Thus, Rn with the canonical scalar product is indeed a Euclidean space.

Note that this Euclidean space is not a field, because there is no notion of vector multiplication
that involves inverses, or of a “unit vector” that could serve as identity of multiplication. While
we can apply the scalar product between a vector ~v and the vector consisting of ones, this would
only yield the sum of ~v’s components, a real number; the structure of the Cartesian product space
is lost in the process. This serves as a belated example to our remark on vector spaces in the
previous section.

A.3.2 Cartesian Coordinate Systems

We can, however, imagine the Rn vectors as multi-dimensional arrows in a Cartesian Coordinate
System. This is a representation of Rn with n mutually perpendicular straight axes and a fixed
origin where all axes intersect. Any point in such a coordinate system can be understood as
synonymous with the arrow leading from the origin to that particular point.

Adding two vectors amounts to drawing the second arrow from the tip of the first one, or vice
versa (this is commutative) in order to get a resulting arrow corresponding to the vector sum.

The scalar product also induces a norm, (in this case, the Euclidean Norm: the square root of
the scalar product of a vector with itself), by which we can measure the length of such an arrow:
The Euclidean norm is the generalization of the Pythagorean Theorem in n dimensions.

Scalar multiplication neatly amounts to scaling the length of an arrow, because the squares and
square root cancel each other out for the scaling factor. Scaling with a negative number flips the
arrow’s direction.

In addition to providing the notion of arrow length, the scalar product also allows us to define an
angle between two arrows/vectors. In order to ensure consistency with two-dimensional geometry,

Definition A.12 The angle between two vectors ~v, ~w ∈ Rn \ {~0} is defined by

cos∠(~v, ~w) :=
〈~v, ~w〉√

〈~v,~v〉
√
〈~w, ~w〉

.

~v, ~w are called perpendicular if 〈~v, ~w〉 = 0.

In the Cartesian coordinate system, we may label the axes with numbers 1 to n. If we draw a
vector from the origin, and project its tip on the various axes, we obtain the components of the
vector in the standard basis E. We will elaborate on this shortly.
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A.3.3 Linear Combinations

Definition A.13 Given m vectors ~v1, · · · , ~vm ∈ Rn, together with m corresponding scaling factors
a1, · · · , am ∈ R, the sum

m∑
j=1

aj~vj

is called a linear combination of those vectors.

This sum is itself a vector from Rn. (Note that ~vj means the j-th vector, not the j-th component
of some vector ~v (which we would denote vj).)

If we take not only one set of scaling factors, but instead allow all possible combinations, we
obtain a whole set of linear combinations:

Definition A.14 Given m vectors ~v1, · · · , ~vm ∈ Rn, the set
m∑
j=1

aj~vj

∣∣∣∣∣∣ a1, · · · , am ∈ R


is called the span of those vectors, denoted by span(~v1, · · · , ~vm).

Examples:

• The span of a single vector defines a line through the origin of the Cartesian coordinate
system.

• The span of two vectors defines a plane containing the origin, if the two vectors do not point
in the same or opposite direction (i.e. they cannot be transformed into each other by scaling).
We will formalize this caveat in the shortly.

• The span of the zero vector is just the origin of the coordinate system.

A.3.4 The Euclidean Unit Vectors

We now return to the standard basis of Euclidean space. This is a set of vectors that each contain
(n− 1) zeros and one 1 component.

Definition A.15 For j ∈ {1, · · · , n}, the unit vector ~ej of Euclidean space Rn has the following
components:

(~ej)k := δjk :=

{
1 j = k

0 otherwise

δjk is called the Kronecker symbol.

(In the following, the Kronecker symbol will be used frequently; it is particularly useful when
evaluating sums.)

We calculate the scalar product of two Euclidean unit vectors:

〈~ej , ~ek〉 =
∑
p

(~ej)p(~ek)p =
∑
p

δjpδkp

Since the first Kronecker symbol can only be 1 (and non-zero) for p = j, all other summands
vanish, and the remaining term satisfies p = j. Thus:

〈~ej , ~ek〉 = δkj = δjk

With the length and angle definitions from above, we see that any unit vector has unit length
(by calculating the scalar product of the vector with itself, δjj = 1) and that different unit vectors
are perpendicular to each other.

We now project a vector ~v onto one of the unit vectors by calculating the scalar product:

〈~ej , ~v〉 =
∑
k

(~ej)kvk =
∑
k

δjkvk = vj
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Now we can write ~v as a linear combination of the Euclidean unit vectors, where the scaling
factors are just the vj obtained by projection:

~v = v1~e1 + · · ·+ vn~en =
∑
j

vj~ej

And indeed, taking the k-th component of this yields

vk = (~v)k =
∑
j

vj(~ej)k =
∑
j

vjδjk = vk X

Definition A.16 The linear span of a set of vectors ~v1, · · · , ~vk is called a generating system of V
if any vector ~v ∈ V satisfies ~v ∈ span(~v1, · · · , ~vk).

As we have demonstrated, E := {~e1, · · · , ~en} is a generating system of Rn.

A.3.5 Linear (In)Dependence and Bases

Definition A.17 A set of vectors {~v1, · · · , ~vk} is called linearly independent if the only linear
combination that yields the zero vector ~0 is the trivial one, where each scaling factor is 0.

If there is a non-trivial linear combination of ~0, the vectors are called linearly dependent.

Examples:

• The zero vector is linearly dependent because a~0 = ~0 for non-zero a.

• Two vectors that are connected by scaling are linearly dependent. If ~v = a~w with non-zero
a, the linear combination ~v + (−a)~w yields ~0 non-trivially.

Lemma A.18 The Euclidean unit vectors E are linearly independent.

Proof: We have established that E is a generating system of Rn. Thus, we can write a linear
combination of the vectors in E that evaluates to ~0 ∈ Rn. With scaling factors a·, we obtain:

~0 =
∑
j

aj~ej

Taking the k-th component of that, yields:

0 = (~0)k =
∑
j

aj(~ej)k =
∑
j

ajδjk = ak

Evidently, we can only combine the vectors in E to ~0 if we scale each ~ej with a factor of 0 – the

trivial linear combination of ~0. �

We now can define the basis of a vector space:

Definition A.19 A set of vectors B ⊂ V of a vector space V is called a basis of V if it is linearly
independent and if it is a generating system of V. If the order |B| of the basis is finite with value
n, V is called n-dimensional, otherwise V is called infinite-dimensional.

Since the vectors in E are satisfy both those conditions, we can call E a base of Rn, an n-dimensional
Euclidean space – in fact, E is called the standard basis of Rn.

It can be shown (cf. [FS20], ch. 2.5) that for a vector space with a finite basis of n vectors,
all other possible bases contain n vectors as well (that is why the above definition of vector space
dimension is meaningful), and that those bases contain the maximum amount of linearly indepen-
dent vectors, i.e. (n+ 1) vectors of an n-dimensional space must be linearly dependent. Also, if a
vector space has a finite basis of n vectors, any set of n linearly independent vectors is also a basis
of that space.
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A.3.6 Linear Maps in Euclidean Space, Matrices

A linear function f in R satisfies two conditions: that scaling factors can be pulled outside the
function application (f(ax) = af(x)), and that f applied to a sum of arguments equals the sum
of f applied to the individual arguments, respectively.

We now extend this concept to vector spaces:

Definition A.20 A map ~f : Rn → Rm is called a linear map if for any a, b ∈ R;~v, ~w ∈ Rn:

~f(a~v + b~w) = a~f(~v) + b~f(~w)

We proceed by evaluating the components of all vectors. For that, we use the standard bases Em,
En of the respective spaces. For any ~v ∈ Rn we obtain:

~v =

n∑
k=1

vk~ek ~f(~v) =

m∑
j=1

fj(~v)~ej

And if we demand linear map behavior from all the components fj , we can plug in the first equation

into the j-th component of ~f :

fj(~v) = fj

(
n∑
k=1

vk~ek

)
=

n∑
k=1

vkfj(~ek) =

n∑
k=1

(fj(~ek)) vk =:

n∑
k=1

Mjkvk

Note that the application of the function can be constrained to the (constant) vectors of the
standard base, while the components of ~v that make up the concrete shape of the vector are
multiplied, due to the linear behavior of ~f in all its components, which we utilized in the third
equality.

Thus, a linear map from Rn to Rm may be calculated by evaluating the map’s behavior regarding
the Cartesian unit vectors of Rn; this yields the coefficients Mjk, where j runs from 1 to m and k
from 1 to n, respectively. Each of the Mjk = fj(~ek) is a real number. It is sufficient to calculate
those m · n numbers once; after that, they can be applied to any vector from Rn by evaluating the
sum in the last equality of the above equation.

Also note that, for a fixed j, the sum over Mjkvk has the structure of the canonical scalar
product in the Euclidean space Rn.

We can organize the map coefficients into a rectangular array M , which we call a Matrix, and
employ a suggestive product notation that we will shortly define properly:

~f(~v) =


f1(~v)
f2(~v)
· · ·

fm(~v)

 =


M1,1 M1,2 · · · M1,n

M2,1 M2,2 · · · M2,n

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,n

 ·


v1

v2

· · ·

vn


=: M · ~v

Note that the rectangular array has as many rows as the resulting vector ~f(~v) and as many columns
as the vector ~v that it is multiplied to.

Definition A.21 A rectangular array of m rows and n columns, containing numbers from R, is
called a real matrix M ∈ Rm×n. Its components are denoted Mjk, where j ∈ {1, · · · ,m} specifies
the row index and k ∈ {1, · · · , n} the column index, respectively. Such a matrix can be multiplied
to a vector ~v ∈ Rn using the matrix product, to obtain a vector ~w ∈ Rm, via

~w = M · ~v :⇔ ∀j ∈ {1, · · · ,m} : wj :=

n∑
k=1

Mjkvk

Matrices in Rm×n are exactly the representations of all possible linear maps Rn → Rm.

We will explore the full range of the matrix product in the next subsection, and conclude this
subsection with observations on the structure of the matrix space.

Lemma A.22 The algebraic structure Rm×n is a vector space over the field R, with the component-
wise vector addition and scalar multiplication exactly as defined for vectors in Euclidean spaces.
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Proof: We exploit the behavior of linear maps and of the direct correspondence between a linear
map and its associated matrix.

Consider two maps ~f,~g : Rn → Rm. Since the resulting vectors are both in Rm they may readily
be added using the familiar vector addition. Let the matrix P ∈ Rm×n represent the resulting map:

n∑
k=1

Pjkvk =
(
~f + ~g

)
j

(~v) = fj(~v) + gj(~v)

Now, if ~f is represented by the matrix M , and ~g by N , respectively, we can plug in the definitions
for fj and gj , combine the sums and factor out the vector components of ~v ∈ Rn:

fj(~v) + gj(~v) =

n∑
k=1

Mjkvk +

n∑
k=1

Njkvk =

n∑
k=1

(Mjk +Njk)vk

Thus, we obtain:
P = M +N per Pjk = Mjk +Njk

Similarly, consider another map ~h := a~f , where a ∈ R scales the map ~f . Because Rm is a vector
space, ~h is a bona fide vector of Rm, and we may represent the map by a matrix Q ∈ Rm×n.

n∑
k=1

Qjkvk = ~hj(~v) =
(
a~f(~v)

)
j

= afj(~v) = a

n∑
k=1

Mjkvk =

n∑
k=1

(aMjk) vk

And thus:
Q = aM per Qjk = aMjk

Now, with the matrix addition explained component-wise as shown, the matrices in Rm×n

constitute an Abelian group, with the zero matrix as its identity (Condition V1). The component-
wise scalar multiplication satisfies the equations in condition V2 of the vector space definition.
Therefore, together with those operations, the set Rm×n does indeed constitute a vector space (cf.
definition A.7, p. 68). �

A.3.7 Matrix Multiplication

In order to formulate the full matrix multiplication, we revisit the visualization of the linear map
~f(~v) with column vectors ~f ∈ Rm and ~v ∈ Rn and a matrix M ∈ Rm×n.

Apparently there is no difference in notation between the column vector ~v and a matrix from
Rn×1.

We now expand the column vector ~v into a matrix V ∈ Rn×p with p columns, which we write
as

V := [~v1, · · · , ~vp] per Vks = (~vs)k,

where the indexes are vector labels and do not indicate vector components. We write square
brackets instead of round ones because we want to reserve the latter for row vectors (which will
be introduced in the next subsection). The square brackets here do not indicate an interval.

For the multiplication, we can imagine that the linear map represented by M treats each of
those columns ~vs (s ∈ {1, · · · , p}) separately, yielding one vector ~f(~vs). Consequently, the results
now form a matrix, too, with m lines and p columns:

F (V ) := [~f(~v1), · · · , ~f(~vp)] per Fjs = (~vs)j ,

where we write F to indicate the matrix structure of the result, similar to when we used ~f with
an arrow to indicate the vector structure.

This means that we can explain a multiplication between matrices by applying the underlying
linear map represented by the left-hand matrix M column by column on the right-hand matrix V .
Before the formal definition, we visualize the operation:

F (V ) =

 (~f(~v1))1 · · · (~f(~vp))1

...
. . .

...

(~f(~v1))m · · · (~f(~vp))m

 =

 M1,1 · · · M1,n

...
. . .

...
Mm,1 · · · Mm,n

 ·
 (~v1)1 · · · (~vp)1

...
. . .

...
(~v1)n · · · (~vp)n
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Definition A.23 Given a matrix M ∈ Rm×n and a matrix V ∈ Rn×p, the matrix product F =
M · V is a matrix F ∈ Rm×p with components

Fjs :=

n∑
k=1

MjkVks (j ∈ {1, · · · ,m}, s ∈ {1, · · · , p})

Note that the summation is over the inner indexes in the product terms, running over the columns
of M and the rows of V . This product is only defined if the left-hand matrix as exactly as many
columns as the right-hand one has rows.

Also note that the matrix product is not commutative. If m 6= p, the product V ·N is not even
defined (because the column and row count relation does not match). If m = p, but m 6= n, M · V
yields an m×m matrix whereas V ·M yields an n×n matrix. Only the products of square matrices
with the same size can potentially commute – but since the left-hand and right-hand matrices are
treated differently, this would depend on the values of the matrix components.

The product is, however, associative. Let A ∈ Rm×n, B ∈ Rn×p and C ∈ Rp×q, then:

[A · (B · C)]js =

n∑
k=1

Ajk(B · C)ks =

n∑
k=1

Ajk

(
p∑
r=1

BkrCrs

)
=

n∑
k=1

p∑
r=1

AjkBkrCrs

=

p∑
r=1

n∑
k=1

AjkBkrCrs =

p∑
r=1

(
n∑
k=1

AjkBkr

)
Crs =

p∑
r=1

(A ·B)jrCrs

= [(A ·B) · C]js,

where we employed the distributive laws and the associativity of multiplication among real num-
bers, which enabled us to rearrange the sums.

For the purposes of this thesis, only square matrices Rn×n operating on other such matrices or
vectors from Rn are relevant – therefore we conclude this subsection with some remarks on those.

First, we observe that the set Rn×n is closed under the matrix product: Multiplying two such
matrices will yield another matrix of size n× n.

Secondly, there is an identity of multiplication, namely the unit matrix 1n, where (1n)jk = δjk.
For A ∈ Rn×n:

(A · 1n)js =
∑
k

Ajk(1n)ks =
∑
k

Ajkδks = Ajs

and (1n ·A)js =
∑
k

(1n)jkAks =
∑
k

δjkAks = Ajs,

thus A · 1n = 1n ·A = A

Together with the associativity of the matrix product, (Rn×n, ·) is a monoid. (If a matrix is not
square, the unit matrices with of the proper size can be multiplied from the left-hand or right-hand
side, respectively, yielding the original matrix – this means there are left and right identities, but
not a two-sided one which would be required for a monoid structure.)

Because the matrices in Rn×n also satisfy the vector space conditions, (Rn×n,+) is an Abelian
group with the component-wise addition. It can be shown that the matrix product distributes over
the component-wise addition, therefore (Rn×n,+, ·) is a ring with unity.

When the kind of product (scalar multiplication or matrix multiplication) is evident from
context, we will omit the · sign from here on, except where it adds clarity.

Definition A.24 Two square matrices M,V ∈ Rn×n commute if MV = VM

Examples:

• If M = 1n, then MV = VM = V .

• If M = 0 (the zero matrix), then MV = VM = 0.

A.3.8 Transposed Matrices and Vectors

If a column vector from Rn can be expressed as a matrix from Rn×1, we can also conceive of a row
vector, where the elements are written horizontally, i.e. a matrix from R1×n.

While we observe that such a structure must behave differently under matrix multiplication
than a column vector would, we will ignore the underlying conceptual differences arising from the
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functional analysis perspective. In fact, we already tacitly did so when introducing the scalar
product in Euclidean space: The left-hand argument of the product 〈·, ·〉 is in fact an element from
the dual space; this dual space is also where the row vectors originate.

This hand-waviness is possible here because we are dealing with simple vectors that can be
expressed as arrays of numbers from the same field the vector spaces are built on1.

Definition A.25 Given a matrix M ∈ Rm×n, the transposed matrix MT is a matrix from Rn×m,
with (

MT
)
jk

:= Mkj .

A square matrix N ∈ Rn×n is called a symmetric matrix if NT = N .

We can obtain MT by taking the columns of M from left to right and writing them down as rows
of MT , from top to bottom (or, alternatively, making M ’s rows into columns of MT ).

Per the definition, we observe that
(
MT

)T
= M for any matrix.

Thus, if ~v is a (column) vector from Rn, ~vT is its associated transposed vector, a row vector.
We now examine how a matrix product behaves under transposition. Given A ∈ Rm×n and

B ∈ Rn×p, we calculate:

(
(AB)T

)
js

= (AB)sj =

n∑
k=1

AskBkj =

n∑
k=1

(
BT
)
jk

(
AT
)
ks

=
(
BTAT

)
js
,

thus (AB)T = BTAT

Note that the matrix product BTAT is well-defined if AB is; there is no mismatch of column/row
lengths.

A.3.9 The Canonical Scalar Product Revisited

In this short subsection we examine the behavior of the scalar product in Euclidean space (cf.
definition A.11, p. 71). For ~v, ~w ∈ Rn, we calculate the matrix product of ~vT and ~w. We will, for
this calculation, view both those vectors as matrices whose components carry two indexes each.
The resulting product is a matrix from R1×1:(

~vT · ~w
)

1,1
=
∑
j

(
~vT
)

1,j
(~w)j,1 =

∑
j

(~v)j,1 (~w)j,1

Since we can identify each 1 × 1 matrix trivially with its single component, we can rewrite this
equation (which we only stated to demonstrate a proper matrix product), leaving out the middle
equality and viewing ~v, ~w as vectors again:

~vT · ~w =
∑
j

vjwj = 〈~v, ~w〉

This also allows us to draw an important conclusion that we will later need in chapter C about
the eigenvalue problem, namely the behavior of the scalar product when one of the vectors is the
result of a linear mapping. Given vectors ~v, ~w ∈ Rn and A ∈ Rn×n:

〈~v,A~w〉 = ~vT (A~w) = (~vTA)~w =
(
AT~v

)T
~w = 〈AT~v, ~w〉

We could have obtained the same result without using matrix product notation, but then we would
have had to write out the sums, re-arrange them and use the distributive laws. Here we just used
the associativity of matrix multiplication (in the third equality) and the rules about the transpose
of a matrix product (in the fourth equality, applied backwards).

Regardless of the method, we observe that the scalar product of two vectors yields the same
value, whether we apply a map on one of the vectors, or its transposed map on the other vector.

1In other cases, e.g. Quantum Mechanics, greater care must be taken: the vectors there are complex wave
functions (from a Hilbert space), and the dual vectors are linear functionals operating on such functions.
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A.3.10 Obtaining matrix components

We show that, for a square matrix A ∈ Rn×n, the components Ajs can be obtained per

Ajk = ~eTj ·A · ~ek

First, we define the vector ~b := A~ek:

br =
∑
s

Ars(~ek)s =
∑
s

Arsδks = Ark

Then we multiply the left-hand row vector with the column vector ~b, which yields a single real
number: ∑

r

(~ej)rbr =
∑
r

δjrbr =
∑
r

δjrArk = Ajk

A.3.11 Matrix Inversion

We return to the topic of square matrices. As per our previous remarks, the set Rn×n, together
with the component-wise addition + and the matrix product ·, constitutes a ring with unity.

While 1n ∈ Rn×n is the two-sided identity of the matrix product, it is not evident that every
square matrix should also have a multiplicative inverse. In order for the square matrices to form
a group under matrix multiplication, such an inverse A−1 would have to be unique for any A, and
two-sided.

Definition A.26 A matrix A ∈ Rn×n is called invertible if (and only if) there is a matrix X ∈
Rn×n such that

A ·X = X ·A = 1n

The matrix X is called the Inverse of A, and written as A−1.

Such invertible matrices do in fact exist, and make up a group, the General Linear Group,
which we will briefly mention in the first algebra chapter, after we have discussed determinants
(cf. the following chapter for those).

At this point, it is already possible to observe some general behavior of inversion. To start
with, the inverse of an inverse matrix A−1 is A, because the above definition is symmetrical in A
and A−1.

Assuming that A has an inverse, we can use the symmetry of 1n and transpose the above
equation: (

A−1
)T ·AT = AT ·

(
A−1

)T
= 1Tn = 1n

Thus, if A is invertible, so is AT , and its inverse is the transpose of A−1.

Also, for a product AB of two matrices, to be invertible, we must have:

(AB) · (AB)−1 = (AB)−1 · (AB) = 1n

To obtain the form of (AB)−1, we use the associativity of the matrix product. Ignoring the middle
equality, we can rewrite:

A ·B · (AB)−1 = 1n

In order to extract the third factor, we multiply the inverses A and B (in this order) from the
left-hand side. If those inverses exist, we obtain:

(AB)−1 = B−1 ·A−1 · 1n = B−1A−1

If we had used the middle equality, we would have had to multiply the inverses of B and A (in this
order) from the right-hand side, which yields the same result.

In the next chapter, we will develop a way to decide on the existence of an inverse matrix using
the determinant. This is not strictly necessary, because, we can give a method to calculate the
inverse. If the calculation fails, the inverse does not exist.

We recall the subsection on linear maps (cf. definition A.20, p. 74) from above and relabel the

objects in its central statement: For a matrix A ∈ Rn×n and vectors ~x,~b:

A~x = ~b
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If we have given coefficients Ajk and a given resulting vector ~b, we can obtain the unknown vector
~x by inverting A:

A−1 ·A~x =
(
A−1 ·A

)
· ~x = 1n · ~x = ~x = A−1 ·~b

This is just what happens when we solve a system of n linear equations with n (unknown)

variables. Using Gaussian elimination2, we transform the extended matrix (A|~b) into (1n|A−1~b)
and implicitly calculate the inverse of A.

Note that such a system of linear equations need not be uniquely solvable: If Gaussian elim-
ination leads to a zero row in the left-hand part of the extended matrix, and a non-zero value
in the right-hand part of the same row, the system has no solution. Or the solution could exist,
but not be unique – if Gaussian elimination leads to a complete zero row in the extended matrix,
corresponding to the trivial equation ~0T~x = 0. Each such row introduces one free variable.

Zero rows in the left-hand part of the extended matrix can (only!) occur when A’s rows are
linearly dependent (then there is a non-trivial linear combination of ~0T , which can be obtained by
Gaussian elimination).

Those considerations lead to the concept of matrix rank, which is determined by the number
of linearly independent row vectors of a matrix (or column vectors, which yields the same value).
If the rank equals n, the (square) matrix has full rank and is invertible.

From the topics laid out up to now, it is not evident that this (necessary) criterion is also
sufficient. In order to show the latter, we would have to expand further on null spaces, bases
and dimension, which we will omit in this appendix. Suffice it to say that the determinant cal-
culation will yield an equivalent necessary criterion (because the determinant is sensitive to linear
dependence of the row/column vectors of a matrix) and suffer from the same deficit.

For an explicit calculation of A−1, we can adapt this method to a matrix X of unknowns, and
instead of some given vector ~b, we put the matrix B := 1n. So we solve the equation AX = 1n
for X, and we can do this with Gaussian elimination in the same way, transforming the extended
matrix (A|1n) into (1n|A−11n) = (1n|A−1). If the transformation is successful, the inverse of A
has been obtained.

We close this section (and chapter) with two definitions that will be useful later on, when dealing
with determinants and the eigenvalue problem.

A.3.12 Orthogonal Matrices

Definition A.27 A square matrix A ∈ Rn×n is called orthogonal if (and only if) it satisfies

ATA = AAT = 1n

For orthogonal matrices, their respective inverses can be obtained by simple transposition.

A.3.13 Similar Matrices

Definition A.28 Two square matrices A,B ∈ Rn×n are called similar if there is an invertible
matrix S ∈ Rn×n such that

B = S−1AS

Note that, if the above holds, the matrix A can be obtained from B per

SBS−1 = S · S−1AS · S−1 = (SS−1)A(SS−1) = 1nA1n = A

We observe an important fact:

Corollary A.29 If two square matrices A,B ∈ Rn×n are similar via an orthogonal matrix O ∈
Rn×n, their transposed matrices are similar via the same matrix O.

If A is symmetric, then so is B

Proof: Since O is orthogonal, B = O−1AO = OTAO. But then, using the remarks in subsec-
tion A.3.8 (p. 76), we may infer that

BT = (OTAO)T = OTAT (OT )T = OTATO

If A is symmetric, then AT = A, and thus BT = OTAO = B. �
2Gaussian elimination does not influence the existence of the inverse matrix, as we will demonstrate in section B.2

of the chapter on permutations and determinants.
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Appendix B

Permutations and Determinants

Determinants can be used to ascertain whether a square matrix is invertible, and will also be of
great importance for solving the eigenvalue problem (cf. chapter C). We will characterize axiomatic
conditions for the determinant function(a map Rn×n → R) and establish several properties that
we need either in the thesis or for subsequent chapters here.

The determinant will be sensitive to permutations of a matrix’s columns (or rows): swapping
two different ones will make the determinant change its sign. In order to express this cleanly,
we will look at permutations formally first. We will rely on [FS20, KM21] (chapters 4 and 9,
respectively) but present some calculations of our own as well.

B.1 Permutations

Given n numbered objects (counting from 1 to n), there are several ways to arrange them into a
single chain, and the number of possibilities rapidly increases with n.

Lemma B.1 There are n! = n(n− 1)(n− 2) · · · · 2 · 1 different ways to order n numbered objects.

Proof: By induction. For n = 1, there is evidently only one way. For the induction step, we assume
n > 1 and that the statement holds for (n − 1) objects. For each of those (n − 1)! orderings, we
now add the n-th object. We can place this at any of the (n − 2) positions between the (n − 1)
objects, or before the first one, or behind the last one. Each of the (n − 1)! orderings therefore
offers n possibilities to achieve a new ordering of the n objects; this makes for n · (n − 1)! = n!
orderings. �

B.1.1 Definition and Representation

More formally:

Definition B.2 A total bijective map σ : {1, · · · , n} → {1, · · · , n} is called a permutation. Two
such maps σ, π are equal if ∀j ∈ {1, · · · , n} : σ(j) = π(j)

We note that, because of bijectivity, for any k in {1, · · · , n} there is exactly one j in the same set
that satisfies k = σ(j). There are n! different such permutations on the set {1, · · · , n}.

One way to represent a permutation is by listing the element connections (an alternative way
is presented in the subsection after next). The following example is a permutation of the numbers
1 to 10:

j 1 2 3 4 5 6 7 8 9 10
σ(j) 5 1 8 4 2 10 9 6 7 3

The inverse permutation can be derived directly from that table, by swapping the lines. It is
customary, but not necessary, to sort them so that the upper line is a linear progression again.

k 1 2 3 4 5 6 7 8 9 10
σ−1(k) 2 5 10 4 1 8 9 3 7 6
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Definition B.3 A permutation that swaps only two numbers j, k 6= j and leaves every other
number unchanged is called a transposition τjk:

τjk(r) :=


k r = j

j r = k

r otherwise

We observe that τ−1
jk = τjk, and that τjk = τkj .

B.1.2 The Symmetric Group

Permutations can be chained together; the result is another permutation. The operation is the
standard function composition ◦, which is associative. For π, σ permutations on the set {1, · · · , n}
and any 1 ≤ j ≤ n:

(π ◦ σ)(j) := π(σ(j))

π ◦ σ is a bona fide permutation itself and can be calculated by drawing up two tables like in
the above example. Its inverse permutation is given by σ−1 ◦ π−1, applying the inverse single
permutations in reverse order.

The composition operation has an identity:

Definition B.4 The identical permutation idn on the set {1, · · · , n} is defined by:

∀j ∈ {1, · · · , n} : idn(j) = j

Thus, for any σ: σ ◦ id = id ◦σ = σ.
Since permutations are by definition bijective, every permutation σ has a unique inverse, and

σ−1 ◦ σ = σ ◦ σ−1 = id.
Together, this satisfies the requirements G1 to G4 of a group (cf. definitions A.1 to A.3, p. 66):

Corollary B.5 The permutations on the set {1, · · · , n}, together with the function composition ◦,
form a finite group with n! elements, the symmetric group Sn. �

(The first algebra chapter D (p. 104) will explain the reference to symmetry.)

Lemma B.6 Only S1 and S2 are Abelian. For n > 2, Sn is not Abelian.

Proof: S1 is Abelian, because it only contains id1, and S2 is, too, because it only contains id2 and
τ1,2 – and id2 is the identity.

We give an example of S3 to prove the assertion:

j 1 2 3

σ(j) 1 3 2
π(j) 2 3 1

(π ◦ σ)(j) 2 1 3
(σ ◦ π)(j) 3 2 1

Evidently, π ◦ σ 6= σ ◦ π.
This example serves for any Sn with n > 3, too, if ∀j > 3 : σ(j) := π(j) := j. �

B.1.3 Cycles

An alternative way to define a permutation is by writing down its various cycles. From the above
table notation, it is not immediately obvious that this is always possible. We will demonstrate
that for any σ ∈ Sn there is a unique minimal decomposition into cycles that lists each number
in {1, · · · , n} at exactly once (or at most once, depending on taste). In such a decomposition,
one can infer (or read directly) all the pairings j 7→ σ(j), and therefore it serves as an equivalent
representation of σ (as compared to the permutation table).

We will also show that there are infinitely more decompositions of σ into cycles. While this
may be useful for other problems (like determining the sign of a permutation; see the following
subsections for that), it will usually increase the number of cycles, and the mappings of σ cannot
be extracted directly anymore – those decompositions, therefore, are not as useful to represent σ.

Since the symmetric group features only one operation, we will omit the ◦ symbol from here
on where this does not reduce clarity.
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Definition B.7 A permutation in ζ ∈ Sn is called a cycle, written ζ = (a1 a2 · · · ak), if it
describes a circular shift of a non-empty subset of {1, · · · , n} containing the numbers {a1, · · · , ak},
while leaving all the other numbers unchanged:

ζ(a1) = a2; ζ(a2) = a3; · · · ; ζ(ak−1) = ak; ζ(ak) = a1; ζ(j) = j otherwise

The number of affected elements k is called the length of ζ, or |ζ|. Each element a· occurs exactly
once in the sequence.

Two cycles ζ1, ζ2 are identical if the elements of ζ2 can be shifted circularly until they show the
same sequence of numbers as ζ1.

Cycles of length 1 are trivial because they map every number onto itself, i.e. such cycles equal
idn.

Cycles are called disjoint if the the subsets of numbers making up their sequence are disjoint.

Examples:

• (1 2 3) is a cyclic shift 1 7→ 2, 2 7→ 3, 3 7→ 1. If n > 3, all other numbers are mapped onto
themselves.

• (3 1 2) is identical to the previous cycle. Identical cycles are always equal permutations, but
the reverse is not true.

• (1)(4)(3)(2) is a composition of trivial cycles. If viewed as a permutation in S4, it is one of
the unique representations of id4.

• (1) is the shortest way to express idn as a (trivial) cycle. It is also a valid way to express id4

in S4. In fact, if a composition of cycles contains non-trivial cycles, all trivial ones can be
omitted. It is a matter of convention if all trivial cycles are listed or not.

• A transposition τjk ∈ Sn equals the cycle (j k).

• (1 2 3 2 3) is not a cycle. Not only are elements occurring more than once in the sequence,
but the represented permutation cannot be defined because it would contain the mappings
3 7→ 2 and 3 7→ 1.

• (1 2 3 1 2 3) is also not a proper cycle. While the mappings are fine, there is redundant
information, which was forbidden in the definition.

• (1 2 3)(1 2 3) is a permutation composed of two identical cycles; we can also write it as
(1 2 3)2. The effect equals two counter-clockwise circular shifts by 1 in the sequence.

• (1 2 3)3 can be shortened to idn (for n ≥ 3): see the following corollary.

• (3 7 2)22 can be shortened to (3 7 2): there are seven threefold cyclic shifts that amount to
idn (n ≥ 7), and only one remaining shift that actually changes elements.

Corollary B.8 For a cycle ζ = (a1 · · · ak) ∈ Sn, ζ−1 = (ak · · · a1). Also, ζk = idn.

Proof: The inverse cycle can be obtained by writing the sequence of ζ in reverse. This undoes all
the changes of ζ in the above definition. If ζ(aj) = aj+1, then ζ−1(aj+1) = aj .

The product of k times ζ involves k circular shifts of the k numbers in ζ; this means that the
sequence, in effect, remains unchanged; any of its elements is mapped onto itself. �

From the above definition, we can conclude that, for any j ∈ N; r ∈ {1, · · · , k}:

ζj(ar) = as with s = 1 + (((r − 1) + j) mod k)

(The shifting by 1 was necessary because the residues go from 0 to (k − 1), not from 1 to k.)

Lemma B.9 Disjoint cycles commute.

Proof: Let ζ1, ζ2 ∈ Sn disjoint cycles, and j ∈ {1, · · · , n}. If at least one of the two cycles is trivial
(length 1), there is nothing to show because idn commutes with any permutation in Sn. Thus, we
only need to consider non-trivial cycles. Because the cycles are disjoint, we know that any element
j occurring in the sequence of ζ1 will not appear in the sequence of ζ2, nor will its predecessor
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or successor (which both belong to ζ11’s sequence). ζ2 will therefore map such an element, its
successor and its predecessor, onto themselves, respectively. Thus:

(ζ1 ◦ ζ2)(j) = ζ1(j) (ζ2 does not change j)
(ζ2 ◦ ζ1)(j) = ζ1(j) (ζ2 does not change successor of j)

(ζ−1
1 ◦ ζ2)(j) = ζ−1

1 (j) (ζ2 does not change j)
(ζ2 ◦ ζ−1

1 )(j) = ζ−1
1 (j) (ζ2 does not change predecessor of j)

The same argument can be used for the sequence elements of ζ2, which are not affected by ζ1.
Thus, ζ1 and ζ2 commute. �

We now present the main claim of this subsection. In the course of its proof, there will be
several observations on the ways to compose cycles into a permutation (or, v.v., decompose a
permutation into cycles).

Claim B.10 Any permutation σ ∈ Sn can be decomposed into c disjoint “canonical” cycles (1 ≤
c ≤ n):

σ = ζ1 ◦ · · · ◦ ζc
This decomposition is unique, up to circular shifts of the sequences of each ζ·, and up to the

ordering of the ζ· in the composition.
The cycle count c is minimal (but varies due to whether trivial cycles are omitted or not).

Before the proof, we present a working example for illustration: In S6, consider

j 1 2 3 4 5 6
σ(j) 2 3 1 5 4 6

It can be easily verified that the following decomposition into three cycles represents σ:

σ = (1 2 3)(4 5)(6)

(We opt to count the trivial cycles for the time being.)
Its cycles are indeed disjoint, which means every number occurs exactly once. In the proof we

will see that any decomposition into different cycles introduces a multiple occurrence of at least one
number and will possibly consist of more cycles. Also, permutations do not generally commute.
When the cycles are no longer disjoint, ordering becomes relevant (execution is always from right
to left).

The cycle (1 2 3) maps the sequence (1, 2, 3) onto (2, 3, 1). The following two decompositions
of that cycle achieve the same: (1 2)(2 3) and (1 3)(1 2). In both cases, one number occurs twice,
so the cycles are no longer disjoint. Also, for the whole σ decomposition, the cycle count would
increase to 4.

We can also give an alternative decomposition of the product (1 2 3)(4 5). This maps the
sequence (1, 2, 3, 4, 5) onto (2, 3, 1, 5, 4). The same is achieved by (1 4)(1 2 3 4 5). This time the
cycle count of σ’s decomposition remains at three, but we incur a double occurrence of both the
numbers 1 and 4.

Now for the proof: We recall that any permutation in Sn is a total bijective map of a finite set of
n numbers onto itself. Each of the n numbers is therefore directly connected with one predecessor
and one successor. If we use the permutation table to line up numbers connected by mappings, i.e.
if we construct a directed graph of the mappings, we will therefore never encounter any forking (in
either direction). Since we can never have a situation where a number does not have a predecessor
or successor (i.e. a graph node with only an outgoing or incident edge, respectively), the only
structure we can build is a set of cycles (understood here in a graph-theoretical sense). There may
be several such cycles, but those must be separate because there can be no forking from one cycle
to another. Cycles consisting of a single element are allowed.

The graph of mappings, therefore has n nodes and n edges, and is structured into c disjoint
cycles. If there is any mapping at all in σ, there must be a cycle, so c ≥ 1. Because there are only
n mappings, there can be no more cycles than n, so c ≤ n. Those extreme cases are circular shifts
between all elements and the identical permutation idn, respectively.

Because the graph contains nothing more or less than the complete mappings of the permutation
σ, it is a unique representation.

We can translate the cycles of σ’s mapping graph into cycle permutations directly, by creating
one cycle permutation ζk for each graph cycle. For each of those ζk, we pick one number belonging
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to the graph cycle as the leading number of ζk’s sequence. From there, we define each further
member of the sequence as the next node/number on the cycle graph. This process will always
terminate because of the above general considerations.

Because the graph cycles are disjoint, the cycle permutations constructed from them are, too.
Each mapping is used in exactly one cycle permutation, and each number is part of exactly one
such permutation’s element sequence.

The ζk constructed this way are commutative (see the above lemma on disjoint cycle permu-
tations). Also, they are only defined up to circular shifts of their respective sequence elements,
because picking the starting element was arbitrary (yet we recall that the definition calls all those
cycle permutations identical).

To conclude the proof, we argue that the cycle count c obtained from this construction is
minimal for any σ. As demonstrated before, it is possible to compose σ of more than c cycle
permutations. But the cycle graph of σ is irrespective of the concrete decomposition; it can never
have fewer than c cycles.

Only by using the above construction can we ensure that for each j ∈ {1, · · · , n} there is exactly
one k, 1 ≤ k ≤ c with σ(j) = ζk(j) and where j appears in the defining sequence of ζk. If there
were any cycle ζ with ζ(j) 6= σ(j), this inequality would have to be compensated. This can happen
trivially by having ζ(j) = j, i.e. ζ a trivial cycle permutation of length 1, which amounts to idn,
and increases the cycle count by one without any effect on the mapping. Or it must happen in
another cycle, because the number j can only appear once in ζ. This other cycle cannot be one of
the cycles obtained by the above construction because there sequence elements are defined by σ
alone. While we have demonstrated above that there are cases where this can be achieved without
increasing the overall cycle count, it can never serve to reduce the number of cycle permutations to
fewer than c, and (if |ζ| > 1) it will introduce cycle permutations that are no longer disjoint. �

Note that the above construction yields as many trivial cycles as the mapping graph of σ con-
tains, so idn becomes decomposed into (1)(2) · · · (n). Per the cycle permutation definition, the
identical permutation can also be written as just one trivial cycle containing a single element.

Example: For the ten-element permutation from the beginning of this chapter, the cycle de-
composition (including trivial cycles) reads: (1 5 2)(3 8 6 10)(4)(7 9). We have rotated each cycle
so that its first element is its smallest one, and we have ordered the cycles by the values of their
first elements. This is always possible for disjoint cycles.

We can obtain this unique disjoint representation directly from the permutation table. The
first cycle starts with 1. We strike out all columns visited in this cycle. For the next cycle, we take
the leftmost (smallest) remaining j and repeat.

Corollary B.11 Any permutation σ ∈ Sn, σ 6= idn, contains at least one non-trivial cycle ζ with
|ζ| > 1.

Proof: If σ 6= idn, there must be a j ∈ {1, · · · , n} with σ(j) 6= j. Since any node on the cycle
graph of σ is part of one cycle, j is part of a cycle with at least the elements j and σ(j). Such a
cycle cannot be expressed by trivial cycle permutations alone. �

Corollary B.12 If σ ∈ Sn is decomposed into disjoint cycles by the technique described in the
main proof, and if trivial cycles are not omitted, the sum of the lengths of the cycles is n.

Proof: We write all disjoint cycles as determined from the mapping graph, trivial or not. Because
any element belongs to exactly one of those disjoint cycles, all n elements are written exactly
once. �

Corollary B.13 While the disjoint cycles of the mapping graph of any σ ∈ Sn are unique (up
to circular shifting), σ may also be written (if n > 1) as the composition of cycles that are not
disjoint.

Proof: Such a composition exists: For some k, j ∈ {1, · · · , n}

σ ◦ (j k)(j k) = σ �

There exist other such compositions of non-disjoint cycles, which will be the next subsection’s
topic.
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B.1.4 Decomposing a Permutation into Transpositions

The following is an significant intermediary result because it will help us calculate an important
property – the sign of a permutation – in the next subsection.

Claim B.14 Any σ ∈ Sn, n > 1, can be written as a composition of only transpositions, i.e. cycles
of length 2.

Proof: Since we already have established that σ can be decomposed into disjoint cycles, it suffices
to show that the statement applies to any cycle permutation.

Cycles of length 1 are trivial because they involve zero transpositions.
Cycles of length 2 are just single transpositions.
For larger cycles, we will give two formulas. We want to map the numbers (a1, a2, · · · , ak−1, ak)

(without the commas, this defines the corresponding cycle permutation of length k) onto the
numbers (a2, a3, · · · , ak, a1). For the course of this proof, it may be helpful to imagine the numbers
as an array of length k, and the permutation will indicate the new array position of an element
(although in fact the permutation only acts on numbers, however they might be arranged).

We first give a decomposition found in [KM21] (Lemma 9.1):

(a1 a2 a3 · · · ak−1 ak) = (a1 a2)(a2 a3) · · · (ak−1 ak),

of which the authors write that it is “evidently correct” – and it is, as we will demonstrate a bit
later.

If we read this decomposition from left to right, it looks suggestively like the positions are
swapped one by one – first, a1 takes the place of a2 (which moves into first position), then the
positions 2 (containing a1 now) and 3 are swapped, and so on – only that this is not what actually
happens, because composed permutations are executed from right to left.

The rightmost of the transpositions is, therefore, the first to be executed, and it swaps the
positions of the two last elements, putting ak in its proper new position. However, ak−1 is now in
last position, which should, in the end, hold a1. This is indeed (successively) accomplished by the
following transpositions.

Before we return to this decomposition, we want to motivate an alternative, that in fact does
what we described might be naively imagined when one reads the previous decomposition from left
to right, namely, swap the element a1 successively through the following positions until it reaches
the end (of the array).

The first transposition, then, swaps a1 and a2 per (a1 a2), putting a2 in the correct position.
After that, a1 is where a3 should go, so we swap those with (a1 a3), putting a1 in the old place of
a3. The next transposition therefore would be (a1 a4), and so on, until a1 has been swapped to
occupy the position before ak. The last swap exchanges those two, and we obtain for the complete
decomposition:

(a1 a2 a3 · · · ak−1 ak) = (a1 ak)(a1 ak−1) · · · (a1 a3)(a1 a2)

We demonstrate this with an array of six numbers; to the left of the separator we write the
transposition used to obtain the array to the right, and we highlight the changed mappings/posi-
tions by capital letters:

a1 a2 a3 a4 a5 a6

(a1 a2) A2 A1 a3 a4 a5 a6

(a1 a3) a2 A3 A1 a4 a5 a6

(a1 a4) a2 a3 A4 A1 a5 a6

(a1 a5) a2 a3 a4 A5 A1 a6

(a1 a6) a2 a3 a4 a5 A6 A1

We observe that each transposition moves the element with higher index into the correct position
(i.e. establishes the right mapping to this element), and all but the last transpositions introduce
an incorrect mapping onto a1, which is corrected in the next step.

This can be determined from the formula, too, without the recourse to array positions: The
first transposition introduces a mapping from a1 to a2 (which is correct), and one from a2 to a1.
The next transposition corrects this mis-mapping by mapping a1 to a3, thus, transitively, a2 now
maps to a3 via the intermediary a1. The next step provides the transitive correction a3 7→ a1 7→ a4,
and so on.
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Returning to the decomposition given in [KM21], we present the array view for six numbers,
too:

a1 a2 a3 a4 a5 a6

(a5 a6) a1 a2 a3 a4 A6 A5

(a4 a5) a1 a2 a3 A5 a6 A4

(a3 a4) a1 a2 A4 a5 a6 A3

(a2 a3) a1 A3 a4 a5 a6 A2

(a1 a2) A2 a3 a4 a5 a6 A1

This method has the advantage that no element but the last one is temporarily wrongly mapped.
Each transposition introduces one correct mapping aj 7→ aj+1, which can be read directly from the
formula. However, the mapping of the last element is changed in every step, successively reducing
the index down to one – this means that the necessary correction is cascaded over all the steps.

On the whole, the literature decomposition may be easier to read; even the mapping ak 7→ a1

via the cascade can be determined by the practiced eye. Both methods, however take exactly
(k − 1) transpositions to effect the cyclic shift. �

Note that the ordering of the transpositions in both methods is important, and that none of
the mini-cycles of two elements is disjoint with all the others.

We have now shown that any transposition can be decomposed into transpositions, which
enables us to define the sign of a permutation.

B.1.5 The Sign of a Permutation

Usually (cf. [FS20, KM21]), the sign of a permutation is defined by using the information in the
permutation table, creating a product of fractions that evaluates to ±1. We would like to provide
an equivalent recursive definition of the sign here that uses the decomposition into transpositions
and is more suited to our aims1.

Definition B.15 The sign of a permutation is a function obeying the following conditions:

SP1: ∀n ∈ N : sign(idn) := +1 (Normalization)

SP2: ∀σ, τjk ∈ Sn : sign(τ ◦ σ) := − sign(σ) =: sign(σ ◦ τ) (Transpositions flip the sign)

A permutation σ is called even if it has sign (+1), odd otherwise.

Corollary B.16 A transposition τjk ∈ Sn has sign (−1).

Proof: Use condition SP2, then plug in SP1: sign(τjk) = sign(τjk ◦ idn) = − sign(idn) = −1 �

Corollary B.17 If a σ ∈ Sn can be decomposed into t transpositions, its sign is (−1)t.

Proof: Use condition SP2 and corollary B.16 repeatedly. �
We would like to give an additional formula using the cycles directly:

Lemma B.18 For any cycle permutation ζ ∈ Sn with length k = |ζ|, the sign is given per

sign(ζ) = (−1)k−1

Proof: We refer to the proof of claim B.14 in the preceding subsection, where we determined that
any cycle of length k can be expressed by (k− 1) transpositions. According to the above corollary,
the stated equation follows directly. �

Since any permutation σ can be decomposed into cycles (either the disjoint canonical ones
obtained directly from the mapping graph, or other constructions (not disjoint) where deviations
from the canonical cycles are compensated accordingly), the sign of σ = ζ1 ◦ · · · ◦ ζc can also be
determined by

sign(σ) =

c∏
j=1

sign(ζj) =

c∏
j=1

(−1)|ζj |−1

Lemma B.19 For any permutation σ ∈ Sn: sign(σ−1) = sign(σ)

1The definition is aesthetically unpleasant because it is not directly defined via the permutation table, and
because decompositions are not unique. We omit the proof that all decompositions of a permutation yield the same
sign.
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Proof: We decompose σ into t transpositions:

σ = τjt,kt ◦ · · · ◦ τj1,k1

Because transpositions are self-inverse, we can construct σ−1 by applying all those transpositions
in reverse, thus

σ−1 = τj1,k1 ◦ · · · ◦ τjt,kt
For both σ ◦ σ−1 and σ−1 ◦ σ, the respective inner transpositions cancel each other out to yield
idn. Since σ−1 contains exactly as many transpositions as σ, its sign is identical, too. �.

Proof alternative: Decompose σ into the disjoint canonical cycles, replace every such cycle
by its inverse, which is (see corollary B.8, p. 82) a cycle with the same respective length and,
consequently, the same sign. In all, the sign of the permutation is unaffected under inversion.

Corollary B.20 For a composition σ = σ2 ◦ σ1 of permutations in Sn, the sign of σ is given per

sign(σ) = sign(σ2) · sign(σ1)

Proof: Decompose σ1, σ2 into t1 and t2 transpositions, respectively. Thus, σ can be decomposed
into t1 + t2 transpositions. According to corollary B.17, the sign computes as

signσ = (−1)(t1+t2) = (−1)t1 · (−1)t2 = sign(σ1) · sign(σ2) �

B.1.6 Permutation Matrices

We consider the identity matrix
1n = [~e1, · · · , ~en]

and define a new matrix composed of the Euclidean unit vectors:

Definition B.21 For a permutation σ ∈ Sn, the permutation matrix Pσ ∈ Rn×n is defined by

Pσ := [~eσ(1), · · · , ~eσ(n)]

Evidently, Pσ contains the Euclidean unit (column) vectors, in the order specified by σ.

Lemma B.22 For any σ ∈ Sn, the permutation matrix Pσ is orthogonal.

Proof: We consider the transpose PTσ and observe that it has the following structure of stacked
row vectors:

PTσ =

 ~eTσ(1)

· · ·
~eTσ(n)


Therefore, the components of the matrix product between PTσ and Pσ are obtained per

(PTσ · Pσ)js =
∑
k

(PTσ )jk(Pσ)ks =
∑
k

(Pσ)kj(Pσ)ks =
∑
k

(~eσ(j))k(~eσ(s))k = 〈~eσ(j), ~eσ(s)〉 = δjs �

Since Pσ is orthogonal, it is also invertible. We will now demonstrate a way to transform a
given square matrix A into a similar matrix Ã by permuting the coordinate axes.

Lemma B.23 For any given matrix A ∈ Rn×n and any permutation σ ∈ Sn, the matrix Ã ∈ Rn×n

satisfying Ãj,k := Aσ(j),σ(k) can be obtained per

Ã = PTσ APσ

Proof: We make use of the column and row vector notations. First, we look at the product
B := APσ. The components Bjk can be determined by multiplying the j-th row of A with the
k-the column of Pσ, which is ~eσ(k).

We recall from the previous chapter (cf. subsection A.3.10, p. 78) that we can obtain matrix
components by multiplying Euclidean unit vectors; it therefore turns out that

Bj,k = Aj,σ(k)

Thus, the columns of the product B = APσ are just the columns of A, permuted according to σ.
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Likewise, multiplying PTσ with B will permute the rows of B: The component Ãrs is obtained
by multiplying the r-th row of PTσ (which is ~eTσ(r)) with the s-th column of B; this yields

Ãr,s = Bσ(r),s

But then we can use the above equation for the components of B and obtain:

Ãr,s = Bσ(r),s = Aσ(r),σ(s) �

This concludes our examination of permutations. The next section deals with matrix determi-
nants, and will rely on this groundwork.

B.2 Determinants

The definitions and some of the proofs used here are taken from [FS20], but adapted to suit our
needs.

B.2.1 Definition and Basic Properties

Definition B.24 A map det : Rn×n → R is called a determinant, if, for any matrix A =
[~a1, · · · ,~an] ∈ Rn×n, the following criteria are met (Weierstraß axioms):

D1: det 1n = 1 (Normalization)

D2: If ~aj = ~ak for some j 6= k, then detA = 0 (det is alternating)

D3: For α, β ∈ R, and for an arbitrary but fixed column position:

det[· · · , α~aj + β~ak, · · · ] = α det[· · · ,~aj , · · · ] + β[· · · ,~ak, · · · ]

(det is multilinear in the matrix columns)

From this definition, we infer some further properties of the determinant. The matrix A is
always understood to have the column vectors ~a1, · · · ,~an.

Corollary B.25 Scaling one column of the matrix A with factor α ∈ R will scale the determinant
of A with the same factor:

det[· · · , α~aj , · · · ] = α det[· · · ,~aj , · · · ] = α detA

Proof: Consider D3 at position j with β := 0. �

Corollary B.26 Adding the column ~ak, scaled with a factor β ∈ R, to the column ~aj (with j 6= k)
does not change the determinant of A:

det[· · · ,~aj + β~ak, · · · ,~ak, · · · ] = det[· · · ,~aj , · · · ,~ak, · · · ] = detA

Proof: Consider D3 at position j with α := 1. The left-hand side of the equation equals the
sum of (det[· · · ,~aj , · · · ,~ak, · · · ]) (which is detA) and of (β det[· · · ,~ak, · · · ,~ak, · · · ]). The latter
determinant is zero, according to D2. �

Corollary B.27 Swapping two columns ~aj ,~ak, j 6= k in A = [~a1, · · · ,~an] flips the sign of the
determinant.

Proof: We consider the positions j and k. First, we add column j to column k, which does not
change detA as per the previous corollary:

detA = det[· · · ,~aj , · · · ,~ak, · · · ] = det[· · · ,~aj , · · · ,~aj + ~ak, · · · ]

We now add the negative of column k to column j:

· · · = det[· · · ,~aj − (~aj + ~ak), · · · ,~aj + ~ak, · · · ] = det[· · · ,−~ak, · · · ,~aj + ~ak, · · · ]

We add column j to column k and use the first above corollary to extract the factor (−1):

· · · = det[· · · ,−~ak, · · · ,~aj , · · · ] = −det[· · · ,~ak, · · · ,~aj , · · · ]

Multiplying the whole equation with (−1) yields:

det[· · · ,~ak, · · · ,~aj , · · · ] = −det[· · · ,~aj , · · · ,~ak, · · · ] = −detA �
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Corollary B.28 Permuting the columns of A with σ ∈ Sn yields a matrix whose determinant is
sign(σ) · detA.

Proof: Any permutation can be expressed as a sequence of transpositions (cf. claim B.14, p. 85).
Each transposition flips the sign of the permutation (cf. corollary B.16, p. 86), and corresponds to
one column swap of the matrix. �

Corollary B.29 For any permutation σ ∈ Sn, its permutation matrix Pσ has the determinant

detPσ = sign(σ)

Proof: The permutation matrix can be obtained by permuting the columns of 1n with σ (recall
definition B.21, p. 87). We use the previous corollary and recall that det 1n = 1 as per D1. �

We use this corollary, together with D1 and D2 to express an important determinant that we
will need later:

Corollary B.30 For j1, · · · , jn ∈ {1, · · · , n}, and Euclidean unit vectors ~ej1 , ~ej2 , · · · , ~ejn ∈ Rn:

det[~ej1 , ~ej2 , · · · , ~ejn ] =

{
sign(σ), if ∃σ ∈ Sn : ∀r ∈ {1, · · · , n} : jr = σ(r)

0, otherwise, i.e. if at least two of the indices are equal

Proof: The first case was dealt with in the previous corollary because the determinant is detPσ.
The second case derives from axiom D2. �

In order to express the value of the previous corollary’s determinant more succinctly, we make
use of the Levi-Civita Symbol from tensor algebra:

Definition B.31 In flat Euclidean n-dimensional space, the totally anti-symmetric tensor of
rank n is denoted by the Levi-Civita symbol ε and takes the component form:

εj1,j2,··· ,jn :=


1, if (j1, j2, · · · , jn) is an even permutation of (1, · · · , n)

−1, if (j1, j2, · · · , jn) is an odd permutation of (1, · · · , n)

0 otherwise, i.e. if at least two of the indices have the same value

Thus:
det[~ej1 , ~ej2 , · · · , ~ejn ] = εj1,j2,··· ,jn

Corollary B.32 If a column of A is ~0, then detA = 0

Proof: Assume that ~aj = ~0. We consider position j. For some α ∈ R, where α 6= 0 and α 6= 1, and

because α~0 = ~0, we obtain:

detA = det[· · · ,~0, · · · ] = det[· · · , α~0, · · · ] = α det[· · · ,~0, · · · ] = α detA

Thus, the product (detA)(1−α) equals zero, and because α was chosen not to equal 1, the second
factor is not zero – therefore, the first one must be. �

Corollary B.33 If the columns of A are linearly dependent, then detA = 0

Proof: If one of the columns is the zero vector, the determinant vanishes as per the previous
corollary. If not, then there is some nontrivial linear combination of the column vectors that yiels
~0: ∑

k

αk~ak = ~0

Some of the αk may be zero, but this combination contains at least two column vectors with
non-zero factors because single non-zero vectors are never linearly dependent. Choose one of
those vectors, which is at some position j of the matrix columns. We now scale the above linear
combination with the inverse of the factor αj :

~0 =
1

α j
~0 = ~aj +

∑
k 6=j

αk
αj
~ak =: ~aj +

∑
k 6=j

βk~ak

At least one of the βk is non-zero. Now, if we add the columns (k 6= j) to the column vector at
position j, scaled with βk, respectively, the determinant of A does not change (cf. corollary B.26,
p. 88). But since this yields the zero vector at position j, the (unchanged) determinant of A must
be zero itself, according to the previous corollary. �
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Lemma B.34 If a matrix A is diagonal, i.e. Ajk = 0 for j 6= k, its determinant is the product of
all its diagonal elements, i.e. detA =

∏
k Akk.

Proof: For each column k, use corollary B.25 to extract the factor Akk, leaving the unit vector ~ek
inside. The result is:

detA =

(∏
k

Akk

)
det 1n =

∏
k

Akk,

where we used D1. �
This also works if one of the Akk should be zero, i.e. if the column k is the zero vector ~0, because

we may always write ~0 = 0 · ~ek. Alternatively, if Akk is zero, A contains a zero vector column and
therefore has determinant zero; also, the product of all diagonal elements must be zero.

Lemma B.35 If a matrix A is upper-triangular, i.e. if Ajk = 0 for j > k, the determinant of A
is just the product of all its diagonal elements. The same holds for lower-triangular matrices.

Proof: The matrix has the following structure:

A =



A11 A12 · · · · · · A1n

0 A22
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . A(n−1),n

0 · · · · · · 0 Ann


If A11 = 0, the determinant will be zero (because A contains a null vector column), and so will the
product of all the diagonal elements be – in this case, we may stop.

Otherwise, we use corollary B.25 (p. 88) to extract the (non-zero) factor A11; the first column
then is ~e1:

detA = A11 · det



1 A12 · · · · · · A1n

0 A22
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . A(n−1),n

0 · · · · · · 0 Ann


Now, the determinant will not change if we add the first column to all columns to the right,

scaled with factors (−A12), · · · , (−A1n). This changes nothing below the first line (only zeros are
added there), and produces zeros in the first line in all those columns:

detA = A11 · det



1 0 · · · · · · 0
0 A22 A23 · · · A2n

...
. . .

. . .
. . .

...
...

. . .
. . . A(n−1),n

0 · · · · · · 0 Ann


From here, we can proceed recursively: extract factor A22 (if it is not zero, in which case the
calculation would stop), (making the second column ~e2), eliminate the rest of the second row, etc.
In the last step, only the factor Ann needs to be extracted. Then we have

detA =

(∏
k

Akk

)
det 1n =

∏
k

Akk,

exactly as in the previous lemma.
For lower-triangular matrices, we can proceed in a similar way, starting with the last column,

and working our way leftwards. This extracts the diagonal elements in reverse order but leaves a
unit matrix inside the determinant, too. �

Lemma B.36 The determinant is invariant under matrix transposition: detAT = detA.
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The proof will occur as a side-effect when we introduce Leibniz’s formula (cf. the next subsection
for that). However, anticipating that proof, we would already like to state here that all of the
above remarks regarding columns of A hold for the rows of A as well, as the rows of A are the
columns of AT .

Claim B.37 If the determinant of a matrix A ∈ Rn×n vanishes, its columns are linearly dependent.
The same holds for its rows.

Proof: First, we observe that if A contains a column vector ~0, the columns are linearly dependent,
and we are done. For the following, we assume that A has no zero column.

Secondly, since detA = 0, we may freely permute the columns and scale them with arbitrary
non-zero factors, which, along with the permutation sign, are absorbed into the product value of
zero.

Our aim now is to transform A into a lower-triangular form, using only operations which leave
the (zero!) determinant invariant.

We now select one of the columns whose first component is not zero, and move it into first
position by a swap (if it is not there already). We scale the column, dividing it by its first
component, and thus obtain an element 1 in the first column. We now proceed to eliminate all
the remaining non-zero first components of the other column vectors, by adding the appropriately
scaled first column vector.

From the columns currently in positions {2, · · · , n}, we proceed in the same way: We select
a column with non-zero second component (its first will be zero after the above), swap it into
position 2 and then eliminate all the remaining non-zero second components of row 2 to the right;
etc.

If we did not find a column with non-zero second component in the second step, the second
diagonal element and all elements to its right-hand side are already zero, and we skip this step.

Eventually, this leads to a lower-triangular matrix; we note that none of those column operations
have changed the value of the determinant, as stated above, and all are invertible.

Since the determinant of the lower-triangular matrix is still zero, and it must equal the product
of that matrix’s diagonal elements (see the lemma before the previous one), at least one of those
must be zero, and correspond to a skipped step from above. The other diagonal elements now have
value 1.

We use the non-vanishing diagonal elements to eliminate all the non-zero elements to their lefts,
starting from the rightmost.

The resulting matrix still has determinant zero, and consists of two types of rows: Either
(type (a)) a row has a 1 on the diagonal position, and zeros otherwise. Or the row has (type (b))
a zero on the diagonal position and zeros to the right (in all columns with higher index). The
elements to the left of the diagonal position are unspecified but may still be non-zero. At least one
such row must exist.

We now pick the rightmost column with a zero on its diagonal position. All components above
the diagonal position are zero because the matrix is lower-triangular. But all components below
must be zero, too, because the columns with higher index correspond to rows of type (a). Therefore,
this column is a null vector.

Because all the above operations can be expressed as linear combinations, we have shown that
the columns of the original matrix A (with vanishing determinant) are linearly dependent: the
zero vector can be expressed as a nontrivial linear combination of its columns.

Due to the previous lemma, and because the determinant of AT is also zero, the same method
can be used to show that the rows of A are linearly dependent. �

Corollary B.38 A matrix A ∈ Rn×n has vanishing determinant if and only if its columns (and
rows) are linearly dependent.

Proof: Combine the previous claim and corollary B.33, which express the two directions of impli-
cation in this statement. �

The matrices with vanishing determinants, therefore, are exactly the matrices with non-full
rank, i.e. with linearly dependent column/row vectors, and (as hinted at in subsection A.3.11,
p. 78) thus the matrices which do not possess an inverse:

Corollary B.39 A matrix A ∈ Rn×n is invertible if and only if its determinant satisfies detA 6= 0

If we recall subsection A.3.11 on matrix inversion from the previous chapter, we observe that, while
the connection between linearly dependent matrix rows and the existence of an inverse still has
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a gap (as indicated there), we have now provided an a posteriori justification for using Gaussian
elimination to calculate the inverse matrix: the elimination operations (on rows) are exactly those
that we used in the proof of the above claim (on columns). Since the existence of the inverse does
not depend on the sign or scale of the determinant, scaling or permuting rows is permitted when
employing Gaussian elimination.

B.2.2 Leibniz’s Formula

We develop a method for calculating the determinant of a square matrix A ∈ Rn×n, using only
Weierstraß’s axioms and their immediate corollaries; this is an adaptation of the proof in [FS20].
After that, we rewrite the formula in a more common way, and prove en route that determinants
are invariant under transposition. In a later subsection we will re-formulate Leibniz’s formula as a
recursive operation: The Laplace expansion.

Theorem B.40 (Leibniz Formula) The determinant of a matrix A ∈ Rn×n is given by

detA =
∑
σ∈Sn

sign(σ) ·A1,σ(1) ·A2,σ(2) · · · · ·An,σ(n)

Before the proof, we note that this formula can be equivalently expressed as a full sum with nn

parts, using the Levi-Civita symbol (cf. definition B.31, p. 89), per:

Corollary B.41 The determinant of a matrix A ∈ Rn×n is given by

detA =
∑

j1,j2,··· ,jn

εj1,j2,··· ,jn ·A1,j1 ·A2,j2 · · · · ·An,jn =:
∑
~

ε~ ·A1,j1 ·A2,j2 · · · · ·An,jn

with the shorthand ~ := (j1, j2, · · · , jn).

Proof of the corollary: Where ~ corresponds to a permutation of (1, 2, · · · , n), the Levi-Civita
symbol yields the sign of that permutation. All other parts of the multi-sum are zero; thus, only
(and all) the permutations contribute to detA, as in the original Leibniz formula. �

Now for the proof of the claim: We start from the familiar column notation:

A = [~a1,~a2, · · · ,~an]

Now we employ a technique called “expansion along the first column” (which we will further
elaborate upon when discussing the Laplace expansion in the next subsection). For this, we express
~a1 in the Euclidean unit vectors:

detA = det[~a1,~a2, · · · ,~an] = det

∑
j1

(~a1)j1~ej1

 ,~a2, · · · ,~an


We plug in the corresponding matrix components and employ the multi-linearity demanded in
axiom D3:

· · · = det

∑
j1

Aj1,1~ej1

 ,~a2, · · · ,~an

 =
∑
j1

Aj1,1 det[~ej1 ,~a2, · · · ,~an]

We now expand along the other columns, too, and obtain a multi-sum with nn parts:

· · · =
∑

j1,j2,··· ,jn

Aj1,1 ·Aj2,2 · · · · ·Ajn,n · det[~ej1 , ~ej2 , · · · , ~ejn ]

Of the nn parts, “only” n! remain because the determinant will vanish for any pair of equal indices
jr = js due to axiom D2. The only remaining contributions are those, where any pairs of indices
are unequal. But this means that the j1, j2, · · · , jn are a permutation of (1, 2, · · · , n).

Thus, we effectively can sum not over all index values but over the n! permutations in Sn:

· · · =
∑
σ∈Sn

Aσ(1),1 ·Aσ(2),2 · · · · ·Aσ(n),n · det[~eσ(1), ~eσ(2), · · · , ~eσ(n)]

But this determinant of permuted unit vectors is just the sign of σ, as proven above:

· · · =
∑
σ∈Sn

sign(σ) ·Aσ(1),1 ·Aσ(2),2 · · · · ·Aσ(n),n
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This looks almost like the Leibniz formula but is in fact (as compared to the claimed statement)
detAT . If we can demonstrate that the two expressions are equal, we will also have proved that
detAT = detA.

To that end, we observe that the product of n matrix elements contains all the numbers from
1 to n both as right-hand indices and as left-hand indices. We recall that permutations form a
group, so there is a uniquely defined inverse of σ. If we pick the element Aσ(j),j with some value
σ(j) = k, then j = σ−1(k), and the same matrix element can be written as Ak,σ−1(k). Now, k may
not be equal to j, but if we rearrange the matrix elements to reflect that (which does not change
their product), we still obtain:

· · · =
∑
σ∈Sn

sign(σ) ·A1,σ−1(1) ·A2,σ−1(2) · · · · ·An,σ−1(n)

We use our results from the section on permutations to replace sign(σ) by sign(σ−1):

· · · =
∑
σ∈Sn

sign(σ−1) ·A1,σ−1(1) ·A2,σ−1(2) · · · · ·An,σ−1(n)

Now, since the sum is evaluated over all possible permutations in Sn, and because σ is a bijective
map, we may as well sum over all the σ−1 without changing anything: each permutation is also
the inverse a permutation, namely of its own inverse:

· · · =
∑

σ−1∈Sn

sign(σ−1) ·A1,σ−1(1) ·A2,σ−1(2) · · · · ·An,σ−1(n)

And since there is no qualitative difference between a permutation and an inverse permutation, we
may now replace σ−1 by σ in the whole expression, to obtain:

detA =
∑
σ∈Sn

sign(σ) ·A1,σ(1) ·A2,σ(2) · · · · ·An,σ(n)

While we have shown that the determinant of A must have the stated form, it is not technically
clear that any expression as stated in Leibniz’s formula always is a determinant. For this, we still
have to show that the formula satisfies the axioms D1,2,3. While this is not hard in the cases D1
and D3, the alternating quality in D2 is more involved to show. We refer the interested reader to
the proof in [FS20] (theorem 4.2.5) for an alternative proof of the D2 case.

D1: Given A = 1n, we observe that Aj,σ(j) = (1n)j,σ(j) = δj,σ(j). There is exactly one permuta-
tion in Sn for which every of those Kronecker deltas is 1, namely the identical permutation
idn. For all other permutations, some of the deltas will yield zero. Leibniz’s formula thus
yields a single contribution with value sign(idn), which is 1 as per definition B.15, SP1 (p. 86).

D3: Given a matrix A = [~a1, · · · ,~an] ∈ Rn×n, we consider the column at some position r, where
we put the scaled columns α~aj + β~ak. Here, we will use Leibniz’s formula in the transposed
form where the permutation operates on the row indices instead of the column indices, and
thus, using Aσ(r),r = (~ar)σ(r):

det[· · · , α~aj + β~ak, · · · ] =
∑
σ∈Sn

sign(σ) · (· · · )(α~aj + β~ak)σ(r)(· · · )

Using distributive laws, every part of the sum splits into two, yielding

· · · = α
∑
σ∈Sn

sign(σ) · (· · · )(~aj)σ(r)(· · · ) + β
∑
σ∈Sn

sign(σ) · (· · · )(~ak)σ(r)(· · · )

But this is exactly Leibniz’s formula for

· · · = α det[· · · ,~aj , · · · ] + β det[· · · ,~ak, · · · ]

D2: We use Leibniz’s formula in the transposed form and interchange notation between the full
multi-sum with Levi-Civita symbol and the sum over permutations in Sn. We assume a given
matrix with equal columns ~ar = ~as (r 6= s) and consider only the positions r and s:

detA =
∑
σ∈Sn

signσ · (· · · ) ·Aσ(r),r · (· · · ) ·Aσ(s),s · (· · · )
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Plugging in ~as = ~ar:

· · · =
∑
σ∈Sn

signσ · (· · · ) ·Aσ(r),r · (· · · ) ·Aσ(s),r · (· · · )

We now transpose, via the inverse permutations, moving the σ application from the left-hand
to the right-hand matrix indices:

· · · =
∑
σ∈Sn

signσ · (· · · ) ·Ar,σ(r) · (· · · ) ·As,σ(r) · (· · · )

We switch to Levi-Civita:

· · · “ = ”
∑
~

ε~ · (· · · ) ·Ar,jr · (· · · ) ·As,jr · (· · · )

This is, however, only an intermediary stage because it contains a sum over js that is reflected
in the ε~, but not the following product. We can amend this by introducing a Kronecker delta
that fixes js to jr:

· · · =
∑
~

δjr,js · ε~ · (· · · ) ·Ar,jr · (· · · ) ·As,js · (· · · )

But because
δjr,js · ε~ = δjr,js · ε··· ,jr,··· ,js,···,

the sum over js yields ε··· ,jr,··· ,jr,···, which is always zero; thus, the determinant vanishes.

This completes the proof of Leibniz’s formula. �

For example, we reproduce the rule of Sarrus, namely the determinant of a 3 × 3 matrix. For
n = 3, the even permutations of the cycle (1, 2, 3), taken with a power of zero, one or two – which
amounts to id3, or one or two cyclic shifts of id3, respectively. The three odd permutations can
be obtained by taking the three even ones, and swapping the mappings for their second and third
respective arguments:

det

 A11 A12 A13

A21 A22 A23

A31 A32 A33


= A11A22A33 +A12A23A31 +A13A21A32 −A11A23A32 −A12A21A33 −A13A22A31

= A11(A22A33 −A23A32) +A12(A23A31 −A21A33) +A13(A21A32 −A22A31)

One can remember this rule by periodically extending the matrix columns by two in both direc-
tions, and then taking the products along the positive diagonals (to the right and downwards)
starting with the three elements in the first row of the original matrix for the positive contribu-
tions. The negative contributions arise from the products on the negative diagonals (to the left
and downwards), as visualized here:

+ + +

−−−

A11

A21

A31

A12

A22

A32

A13

A23

A33

A11

A21

A31

A12

A22

A32

A12

A22

A32

A13

A23

A33

Figure B.1: Sarrus’ rule – diagonal scheme

To conclude this subsection, we reiterate that the above proof also contains the proof for
lemma B.36 (p. 90):

detAT = detA �
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B.2.3 Laplace Expansion

A more practical way of calculating determinants than using Leibniz’s formula is a recursive ex-
pansion according to Laplace. This is just a different notation of Leibniz, and does not reduce the
number of elements that have to be added, but instead of listing all n! permutations of Sn, this
procedure replaces detA by a sum of n scaled determinants of matrices from R(n−1)×(n−1), and so
on. This approach is particularly helpful if A contains lots of zeros. We have used theorem 4.3.2
in [FS20] (p. 222) as basis for our proof.

Theorem B.42 (Laplace Expansion) The determinant of a matrix A ∈ Rn×n is given by

detA =
∑
j

(−1)j+kAjk · det a(A, j, k) =
∑
k

(−1)j+kAjk · det a(A, j, k),

where the first equality is called “expansion along column k”, and the second, “expansion along row
j”. The function a(A, j, k) returns a matrix from R(n−1)×(n−1), which is derived from A by cutting
out its line j and its column k.

Proof: We recall the initial expansion along the first column in the proof of Leibniz’s formula
(p. 92). After the first expansion, we have the following (index j1 renamed to j here):

detA =
∑
j

Aj,1 det[~ej ,~a2, · · · ,~an]

We first examine the case j = 1, and use Leibniz’s formula to evaluate the determinant under the
sum:

det[~e1,~a2, · · · ,~an] =
∑
σ∈Sn

sign(σ)(~e1)σ(1) · (~a2)σ(2) · · · · · (~an)σ(n)

The first vector component is in fact a Kronecker delta: (~e1)σ(1) = δ1,σ(1). This fixes the per-
mutations σ to compositions σ = (1) ◦ σ̃, where σ̃ : {2, · · · , n} → {2, · · · , n} and (1) is a trivial
cycle.

Now, the sign of σ̃ is equal to sign(σ) because lemma B.18 (p. 86) that sign( (1) ) = (−1)1−1 = 1.
If we re-labeled the numbers by subtracting 1 of each, σ̃ would be a bona fide permutation from

S(n−1). Let S̃(2,··· ,n) be the group of permutations on {2, · · · , n} (which is isomorphic to S(n−1)).
In this case:

det[~e1,~a2, · · · ,~an] =
∑

σ̃∈S̃(2,··· ,n)

sign(σ̃)(~a2)σ̃(2) · · · · · (~an)σ̃(n)

But this is, according to Leibniz’s formula, just the determinant of the matrix [~̃a2, · · · , ~̃an], where

~̃ak is just ~ak without its first component. This is because σ̃ never can select the first component
of ~ak.

Differently put, and using the function a declared in the above claim statement:

det[~e1,~a2, · · · ,~an] = det a(A, 1, 1)

For the next part of the sum, j = 2, we have to calculate det[~e2,~a2, · · · ,~an]. But we can reduce
this to the operations for case j = 1 if we just swap lines 1 and 2. Because of corollary B.27 (p. 88)
and lemma B.36 (p. 90), the swap yields a factor of (−1). Thus, we have

det[~e2,~a2, · · · ,~an] = (−1) det[~e1,~a
′
2, · · · ,~a′n],

where ~a′k is derived from ~ak by swapping its first two components.
From here on, everything works as in case j = 1 – we only have to remember that the compo-

nents (2, 3, 4, · · · , n) of ~a′k are the components (1, 3, 4, · · · , n) of ~ak. If we relate this to the original
matrix A, we find that, in this case, column 1 and row 2 are cut out, such that

det[~e2,~a2, · · · ,~an] = (−1) det a(A, 2, 1)

We now can generalize to an arbitrary j. In order to move row j of the matrix to the top
without changing the ordering of the rows in between, we need to perform a cycle permutation
(1, 2, · · · , j) on the rows, which amounts to (j − 1) swaps and yields a sign factor of (−1)(j−1)

(alternatively, cf. lemma B.18, p. 86). Thus, we have:

det[~ej ,~a2, · · · ,~an] = (−1)(j−1) det a(A, j, 1)
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And the whole determinant of A as expanded along the first column, then, is

detA =
∑
j

(−1)(j−1)Aj,1 det a(A, j, 1)

If we want to expand along column k, we can employ the same technique, moving column k
into first place with a cycle permutation on the columns, and incurring a sign factor (−1)(k−1) in
the process. After that, everything can be done as laid out above, only that the function a now
cuts column k out. The product of both sign factors is just (−1)j+k:

detA =
∑
j

(−1)(j+k)Aj,k det a(A, j, k)

Because detAT = detA, we may expand along a row in the same way. Now, j is fixed and the
sum is over the columns k, but other than that, the above formula’s symmetry yields the same:

detA =
∑
k

(−1)(j+k)Aj,k det a(A, j, k)

This concludes our proof. �
The recursion over all the sub-determinants always terminates because it eventually reaches

determinants of matrices with single elements (a), for which we use corollary B.25 (p. 88) and
axiom D1 in definition B.24 (p. 88): det(a) = adet(1) = a.

The sign factor (−1)j+k can easily be remembered as a checkered pattern of “+” and “−”,
starting with positive sign in the upper left-hand corner (coordinates (1, 1)).

For example, we may consider n = 2, and the matrix

A :=

(
a b
c d

)
Expanding along the first column yields:

detA = a · det(d) + (−1) · c · det(b)

= a · d · det(1)− c · b · det(1)

= ad− bc

B.2.4 Determinant of a Product

Claim B.43 For A,B ∈ Rn×n, the determinant of AB takes the form

det(AB) = det(A) det(B)

Proof: To begin with, we recall the determinant of A in the Leibniz formulation with the Levi-
Civita symbol (cf. corollary B.41, p. 92). Coming from the right-hand side of the equation, we want
to manipulate the expression in a way that will allow us to facilitate the matrix product, which we
will need to equate to the left-hand side – for this, we need a full sum over a set of indices, which
is readily available in the Levi-Civita notation:

detA =
∑
~

ε~ ·A1,j1 ·A2,j2 · · · · ·An,jn

We now start on the right-hand side of the claim’s equation. For reasons that will become apparent
later, we replace B by BT .

det(A) det(B) = det(A) det(BT )

=

∑
~

ε~ ·A1,j1 ·A2,j2 · · · · ·An,jn

 ·
∑

~k

ε~k ·Bk1,1 ·Bk2,2 · · · · ·Bkn,n


=

∑
~,~k

ε~ · ε~k ·A1,j1 ·A2,j2 · · · · ·An,jn ·Bk1,1 ·Bk2,2 · · · · ·Bkn,n

In order to reach the left-hand side of our claimed equation, we need to group the matrix
components together so that they evaluate to the various components of (AB). We want to use
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the sum over ~ for the matrix multiplications. Therefore we will have to eliminate the sum over ~k,
and we will want to manipulate the product of the Levi-Civita symbols in a way that connects the
indices for the B matrix elements with ~. For any given combination of ~,~k, we have:

ε~ · ε~k =


1, if ~ and ~k are both even permutations of (1, 2, · · · , n), or both odd permutations

−1, if one of ~,~k is an even permutation and the other one an odd permutation

0, if at least one of ~,~k is not a permutation of (1, 2, · · · , n)

Now, for a given ~ and ~k, there is exactly one permutation that maps ~ to ~k, if both are
permutations of (1, 2, · · · , n). Also, there is exactly one inverse permutation mapping ~k to ~; we
call this permutation σ~k→~ . Both these permutations have the same sign.

If ~ and ~k are both bona fide permutations, then the product ε~ · ε~k evaluates exactly to the
sign of σ~k→~ . If both are odd or both are even, the permutation in between must be even. If one
is odd and one is even, the permutation in between must be odd.

So, if ε~ · ε~k is not zero, we can express it as sign(σ~k→~).

If ~,~k are not both permutations from Sn, there cannot be a permutation from Sn mapping
them on each other, either (for instance, if two of ~k’s components were equal, then at least one
other number in {1, 2, · · · , n} would not be mapped at all because there would be (n−1) remaining
numbers but only (n − 2) remaining components to be mapped). If they are, the permutation is
unique. We may express this by the following statement:

ε~ · ε~k =
∑
σ∈Sn

sign(σ) · δ~,σ(~k) =
∑
σ∈Sn

sign(σ) · δj1,σ(k1) · δj2,σ(k2) · · · · δjn,σ(kn)

We examine every possible permutation. If (and only if) σ maps ~k to ~, then all the Kronecker
deltas evaluate to 1, and the sign of σ has the correct value because σ = σ~k→~ . All other
permutations will cause at least one of the Kronecker deltas to be zero, so there can be only one
contribution to the sum. If there is no permutation between ~ and ~k, then none of the σ can make
all the Kronecker deltas evaluate to 1; thus, the sum is zero. This happens exactly when at least
one of ~,~k is not a permutation of (1, 2, · · · , n).

It turns out that this expression for the product ε~ · ε~k satisfies all our initial demands. The n
Kronecker deltas can be used to eliminate one of the two multi-sums, and the Levi-Civita notation
is replaced by a permutation notation for the Leibniz formula. Because we stated above that we
intend to eliminate the sum over ~k, we re-formulate equivalently:

ε~ · ε~k =
∑
σ∈Sn

sign(σ) · δσ−1(~),~k

We plug this identity in our equation from above:

det(A) det(B) =
∑
~,~k

∑
σ∈Sn

sign(σ) · δσ−1(~),~k ·A1,j1 ·A2,j2 · · · · ·An,jn ·Bk1,1 ·Bk2,2 · · · · ·Bkn,n

We evaluate the multi-sum over ~k, which fixes ~k to σ−1(~):

· · · =
∑
~

∑
σ∈Sn

sign(σ) ·A1,j1 ·A2,j2 · · · · ·An,jn ·Bσ−1(j1),1 ·Bσ−1(j2),2 · · · · ·Bσ−1(jn),n

Since we sum over all permutations in Sn, and because of sign(σ−1) = sign(σ), we may employ the
same switching we used for the Leibniz formula, and obtain:

· · · =
∑
~

∑
σ∈Sn

sign(σ) ·A1,j1 ·A2,j2 · · · · ·An,jn ·Bj1,σ(1) ·Bj2,σ(2) · · · · ·Bjn,σ(n)

We observe that we can now rearrange the matrix components to highlight the matrix multiplica-
tion:

· · · =
∑
~

∑
σ∈Sn

sign(σ) ·A1,j1 ·Bj1,σ(1) ·A2,j2 ·Bj2,σ(2) · · · · ·An,jn ·Bjn,σ(n)

We execute the sum over ~:

· · · =
∑
σ∈Sn

sign(σ) · (AB)1,σ(1) · (AB)2,σ(2) · · · · · (AB)n,σ(n)

But this is exactly what Leibniz’s formula yields for the left-hand side of our claim. �
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B.2.5 Further Properties of Determinants

Here we mention several properties of determinants that will be needed later on, or in the main
part of this work.

Corollary B.44 If (and only if) a matrix A ∈ Rn×n is invertible, determinant of its inverse is
given per

det(A−1) =
1

detA

In particular, detA cannot be zero.

Proof: Use the determinant product formula B.43 from the preceding subsection, and axiom D1
of definition B.24 (p. 88):

1 = det(1n) = det(A−1 ·A) = det(A−1) · det(A) �

Corollary B.45 If a matrix A ∈ Rn×n is orthogonal, its determinant is ±1.

Proof: Since ATA = 1n as per definition A.27 (p. 76), we may employ the product formula B.43.
Because the transposed matrix has the same determinant (cf. lemma B.36, p. 90):

1 = det(1n) = det(AT ·A) = det(AT ) · det(A) = (det(A))2 �

Corollary B.46 If a matrix Ã ∈ Rn×n is similar to a matrix A ∈ Rn×n, then det Ã = detA.

Proof: We recall definition A.28 (p. 79) for similar matrices to write Ã = S−1AS with some
invertible matrix S. The product formula B.43 yields:

det Ã = det(S−1) · det(A) · det(S) = det(A) · [det(S−1) · det(S)]

Now we can use the corollary B.44:

· · · = det(A) ·
[

1

det(S)
· det(S)

]
= det(A) �

Corollary B.47 If a matrix Ã ∈ Rn×n is a permutation of a matrix A ∈ Rn×n with some coordi-
nate permutation σ ∈ Sn, then det Ã = detA.

Proof: As per lemma B.23 (p. 87), Ã = PTσ APσ. But the permutation matrix Pσ is orthogonal
(cf. lemma B.22, p. 87), thus PTσ = P−1

σ . Therefore Ã and A are similar, and we may use the
corollary B.46. �

Lemma B.48 Let M ∈ Rn×n be block-upper-triangular matrix with square matrices A ∈ Rj×j and
B ∈ R(n−j)×(n−j), i.e.,

M =



1 j j+1 n

A C
j

j+1

0 B

n


The matrices A,B may be block-upper-triangular themselves. Then: detM = (detA)(detB). The
same holds for block-lower-triangular matrices and for block-diagonal matrices.

Proof: We use Leibniz’s formula B.40 (p. 92):

detM =
∑
σ∈Sn

sign(σ) ·M1,σ(1) · · · · ·Mj,σ(j) ·M(j+1),σ(j+1) · · · · ·Mn,σ(n)

Now, if for any k ∈ {j + 1, · · · , n} the value σ(k) were in {1, · · · , j}, the contribution to the sum
would be zero, because Mk,σ(k) = 0. So we only need consider permutations σ where {j+1, · · · , n}
is mapped on itself.
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This immediately implies that {1, · · · , j} must be mapped on itself, too, because permutations
are bijective maps. Thus, we may compose σ of two permutations σ = σA ◦σB , where σA operates
non-trivially only on {1, · · · , j} and σB on {j + 1, · · · , n}, respectively:

∀r ∈ {1, · · · , j}, s ∈ {j + 1, · · · , n} : σA(s) = s ∧ σB(r) = r

We use corollary B.20 (p. 87) to factorize sign(σ) = sign(σA) · sign(σB), and rearrange, using
the respective permutations that can yield non-zero contributions:

detM =
∑

σA◦σB∈Sn

[
sign(σA) ·M1,σA(1) · · · · ·Mj,σA(j)

]
·
[
sign(σB) ·M(j+1),σB(j+1) · · · · ·Mn,σB(n)

]
We may now restrict σA, σB to their respective non-trivial sets of numbers without changing the
overall result. In a similar way our proof of Laplace’s expansion (claim B.42, p. 95), we write

σ̃A := σA

∣∣∣
{1,··· ,j}

∈ Sj , σ̃B := σB

∣∣∣
{j+1,··· ,n}

∈ S̃(j+1,··· ,n)

We then split the sum and apply Leibniz’s formula B.40 (p. 92):

detM =

 ∑
σ̃A∈Sj

sign(σ̃A) ·M1,σ̃A(1) · · · · ·Mj,σ̃A(j)


·

 ∑
σ̃B∈S̃(j+1,··· ,n)

sign(σ̃B) ·M(j+1),σ̃B(j+1) · · · · ·Mn,σ̃B(n)


= (detA) · (detB)

Since this did not depend on the inner structure of A,B, we may apply the above recursively,
if A or B are block-upper-triangular themselves.

Since the elements of the sub-matrix C were never used, the formula is also correct if all of C’s
components are zero, i.e. if M is block-diagonal.

And because matrix transposition does not affect the determinant value, the formula also holds
for block-lower-triangular matrices. �

(If applied recursively, this formula also reproduces lemma B.35 (p. 90).)
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Appendix C

The Eigenvalue Problem

For a given square matrix A ∈ Cn×n, there are some vectors that do not change direction1 when
multiplied with A, but are scaled with a factor λ ∈ C. While we will deal only with real matrices, it
is not clear a priori that all the possible scaling factors are real, too. In fact, rotation matrices in R2

and R3 do each feature two scaling factors e±iα – the associated vectors are complex, too, because
a matrix with real components could not create imaginary parts for a real vector’s components by
multiplication.

We will start by stating the problem formally and examining some general properties. In a
second section, we deal with the special case of symmetric matrices. The proofs for the spectral
theorem and the linear independence of certain eigenvectors can found in [FS20] and other linear
algebra textbooks.

C.1 General Properties

Definition C.1 (Eigenvalue Problem) For a given square matrix A ∈ Cn×n, a number λ ∈ C is
called eigenvalue of A, if there is a vector ~v ∈ Cn, ~v 6= ~0, such that

A · ~v = λ · ~v

This vector is called eigenvector of A to the eigenvalue λ.

Corollary C.2 For an eigenvector ~v to the eigenvalue λ of a matrix A, any vector c~v, c ∈ C, is
also an eigenvector to the same eigenvalue.

Proof: Matrix multiplication is linear; thus, A · (c~v) = c · (A~v) = c(λ~v) = λ · (c~v). �
Thus, the unique property of an eigenvector always is its direction; its length may be chosen

arbitrarily.
We now proceed to find non-trivial solutions for the eigenvalue problem. First, we may rewrite

the equation, using 1n~v = ~v:

A~v = λ~v ⇔ (A− λ1n)~v = ~0

Now, if Mλ := A− λ1n were invertible, we might solve for ~v, and obtain:

~v = 1n · ~v = (M−1
λ ·Mλ) · ~v = M−1

λ · (Mλ~v) = M−1
λ ·~0 = ~0

Since we stipulated ~v 6= ~0, this is no nontrivial solution of our problem. Thus, ~v 6= ~0 implies
that Mλ must not be invertible. We refer to corollary B.39 (p. 91) and obtain:

Corollary C.3 The solutions to the eigenvalue problem for a given matrix A ∈ Cn×n are numbers
λ ∈ C, for which

det(A− λ1n) = 0

Definition C.4 The expression det(A− λ1n) for a given matrix A ∈ Cn×n is a polynomial in λ,
called the characteristic polynomial of A and denoted χA(λ).

The eigenvalues are the roots of this polynomial, i.e. the solutions for χA(λ) = 0.
The set of eigenvalues of a given matrix A is called the spectrum of A.
If an eigenvalue λ corresponds to an k-fold root of χA, it is said to have an algebraic multiplicity

of k.
1They may change to the opposite direction, though, because this equals scaling with a negative real number
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Lemma C.5 For a matrix A ∈ Cn×n, the characteristic polynomial χA has n roots, i.e. the sum
of algebraic multiplicities of the different eigenvalues equals n.

Proof: Using Leibniz’s formula B.40 (p. 92), we observe that, for the permutation idn ∈ Sn, the
contribution to det(Mλ) is

(Mλ)1,1 · · · · · (Mλ)n,n = (A1,1 − λ) · · · · · (An,n − λ)

This permutation is the only one for which all the diagonal elements of Mλ feature in the con-
tribution to det(Mλ), and thus has the highest number of factors containing λ. The polynomial
χA therefore has degree n, and will have n roots in C, according to the Fundamental Theorem of
Algebra2 (cf. [KM21], p. 395).

Therefore, χA has n roots in C. �

Definition C.6 For an eigenvalue λ of a matrix A ∈ Cn×n, the span of its associated eigenvectors
is called eigenspace of λ, denoted Eλ. The dimension of this vector space is called λ’s geometric
multiplicity.

The eigenvectors to λ can be determined by solving the homogeneous equation Mλ~v = ~0 for this
particular λ, i.e. by finding a basis of Mλ’s kernel, which can be done by Gaussian elimination.
Since Mλ is not invertible, the kernel is non-trivial and will therefore contain at least one vector
unequal to ~0. But, depending on the components of Mλ, the dimension of Eλ might be less than
the algebraic multiplicity of λ (it cannot exceed that; cf. lemma 3.5.2 in [FS20]).

The eigenspaces of different eigenvalues are, however, linearly independent. We show this by
adapting a proof of [FS20], p. 245:

Theorem C.7 For any matrix A ∈ Cn×n, eigenvectors to different eigenvalues are linearly inde-
pendent.

Proof: Assume there are m ≤ n different eigenvalues λ1, · · · , λm, and respective eigenvectors
~v1, · · · , ~vm. We prove the statement by induction for k ∈ {1, · · · ,m}, recalling definition A.17
(p. 73). The case k = 1 is trivial because, since ~v1 is an eigenvector, it cannot be the zero vector,
thus α1~v1 = ~0 is only possible for α1 = 0 (non-zero single vectors are always linearly independent).

For 1 < k ≤ m, assume that the statement holds for (k−1), such that {~v1, · · · , ~vk−1} is a linearly
independent set. We now add ~vk to that set and consider the condition for linear independence:

α1~v1 + · · ·+ αk−1~vk−1 + αk~vk = ~0 ⇒ α1 = · · · = αk−1 = αk = 0 (*)

We multiply the antecedent equation once with A (from the left), and once with λk:

A · (· · · )  α1λ1~v1 + · · ·+ αk−1λk−1~vk−1 + αkλk~vk = ~0

λk · (· · · )  α1λk~v1 + · · ·+ αk−1λk~vk−1 + αkλk~vk = ~0

We now subtract both of these equations and obtain:

α1(λ1 − λk)~v1 + · · ·+ αk−1(λk−1 − λk)~vk−1 = ~0

The vector ~vk has vanished here because it had identical scaling factors.
Now, since we assumed the ~v1, · · · , ~vk−1 to be linearly independent in the induction hypothesis,

we may use definition A.17 and observe that all the scaling factors of the above vectors must vanish,
i.e.,

α1(λ1 − λk) = · · · = αk−1(λk−1 − λk) = 0

Because the eigenvalues λ1, · · · , λm are all different, their differences cannot be zero; but then
the respective α factors must be:

α1 = · · · = αk−1 = 0

Plugging this result back into the antecedent equation in (*), we obtain

αk~vk = 0,

but this implies αk = 0, too, like in the induction base case.
Therefore, α1 = · · · = αk = 0, which means that the implication in (*) is correct, and thus the

set {~v1, · · · , ~vk} is linearly independent, too. �
To conclude the general observations on eigenvalues, we show that similar matrices are co-

spectral :

2C is algebraically closed: Any complex polynomial has a complex root. Obtain the n roots by dividing off the
roots one by one, using polynomial division. Each resulting polynomial has a lesser degree (by 1) and as per the
fundamental theorem, will have a complex root if it has degree ≥ 1.
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Lemma C.8 If two square matrices A,B ∈ Rn×n are similar via a a matrix S ∈ Rn×n, they share
the same spectrum of eigenvalues.

Proof: The eigenvalues of A are determined by solving det(A − λ1n) = 0. Since A and B are
similar via S, we know that B = S−1AS (cf. definition A.28, p. 79).

We take the matrix Mλ := A− λ1n and observe that

S−1MλS = S−1AS − λS−11nS = B − λS−1S = B − λ1n

Thus, (B − λ1n) and (A − λ1n) are similar, and have the same determinant, according to corol-
lary B.46 (p. 98). Thus, if λ is an eigenvalue for A, it also is one for B, and vice versa. �

C.2 Symmetric Matrices

For real symmetric matrices, we can show that not only are the various eigenspaces linearly inde-
pendent, but all eigenspaces have maximum dimension, and the set of eigenvectors is a basis of
Rn. Also, all eigenvalues are real numbers. We will show the second implication first, and then
adapt a proof in [FS20] (p. 361f) for real symmetric matrices to prove the first implication. The
combination of both implications is known as spectral theorem.

Lemma C.9 Real symmetric matrices have real eigenvalues.

Proof: We show a more general result, namely that hermitian matrices have real eigenvalues. A
matrix A ∈ Cn×n is hermitian if A† := (AT )∗ = (A∗)T = A, where the star denotes complex
conjugation. If a hermitian matrix is real, this reduces to AT = A, which is just the symmetry
condition for real matrices.

Now, we consider a hermitian matrix A = A† ∈ Cn×n and write the defining equation for the
characteristic polynomial:

det(A− λ1n) = 0 (*)

Because A = A†, we may also write

det(A† − λ1n) = 0

and infer that if λ is an eigenvalue of A, it is also an eigenvalue of A†.
We now take the complex conjugate of that equation. Because that operation commutes with

addition and multiplication in C, this is equivalent to

det((A†)∗ − λ∗1n) = 0

But A† = (AT )∗, so that (A†)∗ = ((AT )∗)∗ = AT , and thus

det(AT − λ∗1n) = 0

Taking the transpose of that yields:

det(A− λ∗1n) = 0 (**)

We now solve equations (*) and (**) simultaneously and obtain (in the same ordering) solutions

λ1 = · · · , · · · , λn = · · ·
λ∗1 = · · · , · · · , λ∗n = · · · ,

where the numerical values of each λj and λ∗j are equal. But then

∀j ∈ {1, · · · , n} : λj = λ∗j ,

which means that all the λj are real numbers. Since a real symmetric matrix is hermitian, this
concludes our proof. �

Theorem C.10 For real symmetric matrices in Rn×n, there is an orthogonal basis of Rn consisting
of normalized eigenvectors.
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Proof: In preparation, we recall subsection A.3.9 (p. 77), where we showed that for a matrix
A ∈ Rn×n and vectors ~v, ~w ∈ Rn, 〈~v,A~w〉 = 〈AT~v, ~w〉. If A is also symmetric, this implies:

〈~v,A~w〉 = 〈A~v, ~w〉

Let (λ1, · · · , λn) be the spectrum of A, and (~v1, · · · , ~vn) a tuple of associated eigenvectors. We
now present an iterative method for obtaining an orthogonal set of normalized eigenvectors that
shadows the Gram-Schmidt orthonormalization process (cf. theorem 6.5.5 (pp. 342ff) in [FS20]).

We start with the first eigenvector ~v1 and normalize it, scaling it with the square root of 〈~v1, ~v1〉;
this we call ~u1.

Evidently, ~u1 is an eigenvector of A to the eigenvalue λ1 (cf. corollary C.2, p. 100).
We now take ~v2, the eigenvector to λ2, and project out its component parallel to ~v′′1 :

~v′2 := ~v2 − α1~u1

We fix α1 by demanding that ~v′2 be orthogonal to ~u1:

0
!
= 〈~v′2, ~u1〉 = 〈~v2, ~u1〉 − α1〈~u1, ~u1〉 = 〈~v2, ~u1〉 − α1  α1 = 〈~v2, ~u1〉

Also, we define the ortogonal space fo ~u1:

W1 := { ~w ∈ Rn| 〈~u1, ~w〉 = 0}

But for all vectors ~w ∈W1, we can use the scalar product equation from above:

〈~u1, A~w〉 = 〈A~u1, ~w〉 = λ1〈~u1, ~w〉 = λ1 · 0 = 0

Thus, if ~w is in W1, so is A~w.
Since ~v′2 clearly is in W1, we may infer that A~v′2 is also in W1. We plug in the above definition

for ~v′2 and use the eigenvalue equation for ~v2 and ~u1:

A~v′2 = A(~v2 − α1~u1) = λ2~v2 − α1λ1~u1 = λ2(~v′2 + α1~u1)− α1λ1~u1 = λ2~v
′
2 + α1(λ2 − λ1)~u1

Now, the part parallel to ~u1 must vanish we had already established that A~v′2 ∈W1. Thus:

α1(λ2 − λ1) = 0

If λ2 = λ1, both ~v2 and ~u1 are eigenvectors from the same eigenspace. Then, ~v′2 is a linear
combination inside that eigenspace, it is perpendicular to ~u1, and it is a bona fide eigenvector of
A to that eigenvalue.

If, however, λ2 6= λ1, the projection factor α1 must vanish. This means that the eigenvector ~v2

was already perpendicular to ~u1 in the first place, and ~v′2 is in fact equal to ~v2.
In both cases, A~v′2 = λ2~v

′
2, so ~v′2 is an eigenvector of A to λ2. We determine ~u2 by scaling ~v′2

with the inverse square root of its Euclidean norm, to obtain unit length.
We proceed accordingly for the next eigenvector (that is, if n > 2). From ~v3, we project out

the parts along ~u1 and ~u2, so that ~v′3 ⊥ ~u1 and ~v′3 ⊥ ~u2. Clearly, ~v′3 is in W1, but we now define

W2 := { ~w ∈W1| 〈~u2, ~w〉 = 0}

W2 is an orthogonal subspace of W1. All its elements are orthogonal to ~u1, but also to ~u2. By
examining 〈~u2, A~w〉 for any ~w ∈W2, we see that A~w will also be in W2. Plugging in the definition

of ~′3, and using the eigenvalue equation for ~v3, ~u1 and ~u2, we again see that ~v′3 is an eigenvector
of A to λ3. If λ3 = λ1, it belongs to the eigenspace of λ1; if λ3 = λ2, it belongs to the eigenspace
of λ2 (which would be redundant, but not wrong, if λ1 = λ2). If it is not part of one of those
eigenspaces, the projection factor must vanish, and ~v3 was already in W2.

In this way we can construct, one by one, an orthogonal set of normalized eigenvectors for A,
which concludes our proof. �

Corollary C.11 For any real symmetric matrix A ∈ Rn×n, the eigenspaces of different eigenvalues
are perpendicular to each other.

Proof: This follows directly from our observations in the previous theorem’s proof. If an eigen-
vector of A does not belong to a certain eigenspace, it is not only linearly independent (by virtue
of theorem C.7, p. 101) with that eigenspace, but it is already perpendicular to it, because no
components along that space would be projected out in the Gram-Schmidt process as described
above. �
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Appendix D

Algebra 1: Some Groups

This short chapter is only supposed to illustrate some widely used groups, and to give a graph-
ical representation of the symmetric group Sn, which is the permutation group (cf. section B.1,
pp. 80ff.).

Dihedral groups Dn, n ≥ 3 are subgroups of Sn, respectively, and are only mentioned because
D3 is sometimes used as an example of a symmetric group. For n = 3, the symmetric group S3

is in fact equal/isomorphic to D3, but for higher n the symmetric groups contain more elements
than the respective Dn; thus, introducing dihedral groups may be helpful to avoid confusion.

The first section introduces some matrix groups because matrices feature prominently in this
work.

The definitions are taken from [K+88] but could be found in any textbook on linear algebra.

D.1 Linear Maps / Matrices

Definition D.1 The group GL(n,F) is called the general linear group and consists of invertible
matrices from Fn×n, i.e. matrices with non-vanishing determinants. The group operation is the
standard matrix multiplication.

Usually, the fields considered are R or C.
The unit matrix 1n is part of GL(n,F), because it has determinant 1. We already mentioned

that the product of two invertible matrices is invertible, too (cf. subsection A.3.11, p. 78) – this
means that the group is closed under its operation (axiom G1 of definition A.1, p. 66).

Definition D.2 The group SL(n,F) ⊂ GL(n,F) is called the special linear group consists of
matrices from Fn×n with determinant 1 (“unimodular matrices”).

This group is closed as well, due to the determinant product law B.43 (p. 96).

Definition D.3 The group O(n) ⊂ GL(n,R) is called the orthogonal group and consists of the
matrices A in Rn×n that satisfy

ATA = AAT = 1n

Recalling the subsection A.3.8 (p. 76) on transposed matrices, we can easily verify that this group
is closed. Let A,B ∈ O(n), then

(AB)T (AB) = BTATAB = BTB = 1n; (AB)(AB)T = ABBTAT = AAT = 1n

Thus, the product of two orthogonal matrices is itself orthogonal.
We recall from lemma B.22 (p. 87) that the permutation matrices are orthogonal and therefore

belong to this group. Also, corollary B.45 (p. 98) tells us that all the matrices in O(n) have
determinant ±1.

Definition D.4 The group SO(n) ⊂ O(n) is called the special orthogonal group and contains the
matrices A in O(n) satisfying det(A) = +1.

O(2) and O(3) can be used to represent rotations in R2,R3, respectively.
Note that not every real matrix with determinant 1 belongs to SO(n). Consider

A :=

(
2 0
0 1

2

)
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Clearly, A ∈ SL(2,R), but we easily verify that A /∈ SO(2):

ATA = AAT =

(
4 0
0 1

4

)
6= 12

D.2 Dihedral Groups

The dihedral groups contain symmetry transformations in two dimensions, namely rotations and
reflections of regular n-gons, relative to their center points. We will omit the cases n = 1 and
n = 2 and define:

Definition D.5 For n ∈ N, n ≥ 3, the group Dn consists of the n rotations and n reflections that
transform a regular n-gon in the two-dimensional plane on itself, with the composition of mappings
as its group operation.

One can imagine a piece of cardboard in the shape of such an n-gon with numbered corners centered
at the origin of a 2D Cartesian coordinate system. It has a front side and a flip side (hence the
name “dihedral”, i.e. an object with two faces). Rotations never change the side facing upwards,
while reflections flip the cardboard piece. Each reflection is self-inverse, but each composition of
two reflections will leave the side facing up unchanged, i.e. amount to one of the rotations.

Rotations commute (in 2D) and constitute an Abelian subgroup of Dn. If we initially place
the corner 1 at coordinates (1, 0) by default, and number the corners counter-clockwise (front side
facing up), there are n rotations transporting corner 1 to the former location of corner (1 + j),
(j ∈ {0, 1, · · · , (n − 1)}). We name the rotations rj and identify the respective rotation angles
as j · (2π)/n. Evidently, r0 is the identity operation of the group. Also, we observe that

rj ◦ rk = rk ◦ rj = r(j+k) modn and (rj)
−1 = r(n−j) modn

Therefore, the rotations constitute an Abelian subgroup of Dn.
As for the reflections, we have to differentiate between even and odd n.

• If n is even, then the n-gon has (n/2) distinct pairs of parallel edges. The line connecting the
midpoints of such a pair splits the n-gon in two symmetric halves and therefore corresponds
to one reflection operation. The n-gon also has (n/2) distinct pairs of opposite vertices
(corners). The lines connecting those also correspond to reflection operations.

For j ∈ {1, · · · , (n/2)}, we define m2j−1 as the reflection for the symmetry line through
vertex j, and m2j as the reflection for the symmetry line through the edge between vertices j
and (j + 1).

• If n is odd, the n-gon has n distinct pairs of one vertex (corner) and its opposing edge.
Connecting the vertex to the midpoint of that edge defines a reflection operation.

For j ∈ {1, · · · , n}, we define mj as the reflection for the symmetry line through vertex j.

We show the axes of the various reflection operations for n = 5 and n = 6:

m1

m2

m3

m4

m5

1

2

3

4

5

+ m1

m2

m3

m4

m5

m6

1

23

4

5 6

+

Figure D.1: Reflections in the dihedral groups D5 and D6
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D.3 Symmetric Groups Revisited

We already established that the permutations of {1, · · · , n} constitute the symmetric group Sn (cf.
subsection D.3, p. 106).

While the dihedral groups Dn have 2n elements (n rotations including id, n reflections), the
symmetric groups Sn have n! elements, respectively. Those numbers are equal in case n = 3 but
not otherwise.

In fact, we may think of all the operations in Dn as permutations of the corner labels in the
respective Sn (n ≥ 3).

But if we follow a cyclic path

1→ 2→ · · · → (n− 1)→ n→ 1,

this will only ever lead us along the edges of the Dn polygon in one of two directions. However, the
permutations in Sn also allow us to create twisted shapes. We do not see any effects of this for the
triangle, but for four vertices, there are already three different shapes (times two directions). One
could follow the edges of a square (as in D4), but one could also take first one such edge, then a
diagonal, then another square edge, and return. Or one could first take a diagonal, then a square
edge, then the another diagonal and the remaining square edge:

Figure D.2: Three basic path shapes in S4

For S5, there are 12 basic shapes (times two directions): one regular pentagon, one star, and
two other shapes in five different flavors (depending on where the path starts). We show one of
each kind:

Figure D.3: Four of the 12 basic path shapes in S5

Each of the basic paths can be rotated in n ways, or traveled backwards. Thus, there are
n!/(2n) basic path shapes connecting the corners of a regular n-gon – only one of them would be
the “cardboard” equivalent of Dn.

For n = 3, there is only one basic path, namely the regular triangle. A twist would amount
to the same as a reflection, therefore D3 already describes all the elements of S3 – but as we have
demonstrated, this is not the case for n > 3.

One can determine all the basic shapes (with both directions) by fixing one of the corners of
the regular n-gon and applying all (n−1)! permutations of the other corner labels. This will reveal
n!/(2n) pairs of basic shapes (i.e. the basic shape in its two directions). Rotating the (n − 1)!
shapes in any one of n ways yields all possible permutations. This may serve as a justification for
the term “symmetric group” – apart from the twists, there are just the Dn symmetry operations
at work.
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Appendix E

Algebra 2: Rings and Fields

We provide a short introduction to finite fields, relying mainly on [Hof14], chapter 2. We will,
however, omit certain proofs from Number Theory and refer the interested reader to dedicated
textbooks. Neither will we be able to cover all the proofs from Algebra in the scope of this work.

We begin with rings of polynomials, as a prerequisite for constructing finite fields. Then
we examine certain finite rings and fields, from which we will generalize to Galois Fields (using
polynomials).

E.1 Polynomials

Definition E.1 The finite sum expression

p(x) :=

n∑
j=0

ajx
j = anx

n + · · ·+ a1x+ a0,

where the coefficients aj are from a field F and an 6= 0 is called polynomial of degree n in x over
F. The set of all polynomials over F is denoted F[x].

Any polynomial in F[x] can be represented by (and identified with) a tuple of its coefficients,
e.g. (an, · · · , a1, a0).

Definition E.2 The function deg : F[x]→ N0, p(x) 7→ deg p(x), is called degree and retrieves, for
any p(x) ∈ F[x], the maximum exponent of x with a non-zero coefficient occurring in p(x).

Definition E.3 The sum of two polynomials p(x), q(x) ∈ F[x] is a polynomial of degree

max{deg p(x),deg q(x)},

whose coefficients are the sums of the respective coefficients in p(x), q(x). If one in {p(x), q(x)}
has lesser degree than the other, leading zeros may be added to its tuple representation.

If the coefficient tuples are brought to the same lengths, addition may be performed component-
wise as in vector spaces.

Corollary E.4 The polynomials in F[x] constitute an Abelian group with the polynomial addition.

Proof: Recalling definition A.3 (p. 67), we observe that the operation is closed as per the above
definition E.3 (G1). Since it is defined by component-wise application of F’s addition, it is also
associative (G2). The polynomial (0) is the identity element (G3), and since any coefficient has
its additive inverse in F, the polynomial (−an, · · · ,−a1,−a0) is the (well-defined) additive inverse
of (an, · · · , a1, a0) (G4). The addition described above is also commutative; thus, the group is
Abelian. �

Definition E.5 The product of two polynomials p(x), q(x) ∈ F[x] is a polynomial with a degree of

deg p(x) + deg q(x)

If the coefficients of p(x), q(x), (p · q)(x) are named with a, b, c, respectively, then

∀j ∈ {0, 1, · · · , (deg p(x) + deg q(x))} : cj :=
∑

0≤α≤deg p(x)
0≤β≤deg q(x)

α+β=j

aα · bβ
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Corollary E.6 The polynomials in F[x] constitute a monoid with the polynomial multiplication.

Proof: Recalling definition A.2 (p. 67), we observe that the operation is closed (G1) and associative
(G2). The polynomial (1) is the identity element (G3). �

However, since there is no way that the product of two polynomials can have lesser degree than
its factors, only polynomials of degree zero can have multiplicative inverses – but this is trivial
because such polynomials (a0) 6= (0) are identical with their coefficient a0, for which F readily
provides the inverse (1/a0).

We omit demonstrating that distributive laws do hold, and directly state, according to defini-
tion A.5 (p. 68):

Corollary E.7 (F[x],+, ·) with polynomial addition and multiplication is a commutative ring with
unity.

Note that, because (F[x]\{(0)}, ·) is not a group, (F[x],+, ·) is not a field (cf. definition A.6, p. 68).

Definition E.8 A polynomial p(x) ∈ F[x] is called reducible if there are non-constant factors
f1(x), f2(x) ∈ F[x] such that p(x) = f1(x) · f2(x). It is called irreducible otherwise.

Evidently, while there may be no multiplicative inverses in the ring of polynomials, a reducible
polynomial can still be divided by one of its factors, yielding a bona fide polynomial1. We can also
expand this notion to

Lemma E.9 (Polynomial Division) Given polynomials p(x), q(x) ∈ F[x], where neither is the zero
polynomial, there is a unique way to express p(x) as

p(x) = q(x) · s(x) + r(x),

with deg r(x) < deg q(x). r(x) is called the residue polynomial.

Proof: Let n := deg p(x) and m := deg q(x). If we denote the coefficients of p(x), q(x), s(x), r(x)
with a, b, c, d, respectively, we may infer from the premise that an and bm are non-zero. We consider
three cases:

• If n < m, then q(x) · s(x) must be zero because of the remarks after corollary E.6, or the
product would have too high a degree. Thus s(x) := (0). This implies r(x) := p(x), satisfying
that deg r(x) < m.

• If n = m, we can multiply q(x) with a single number, namely the polynomial s(x) := (c0),
with

c0 :=
an
bn
6= 0

This fixes the highest coefficient in q(x) · s(x) as an. For the lower coefficients, we observe
that aj = bjc0 + (aj − bjc0) =: bjc0 + dj . The first part of that sum is the coefficient j for
q(x) · s(x), and the second (in brackets) the necessary correction in r(x). But since j < n,
deg r(x) < n, with a maximum value of (n− 1).

• If n > m, this is the classic case for polynomial division. We take s(x) to be a polynomial
with degree (n −m). We now write (n + 1) equations for the coefficients of p(x) – the first
(n −m + 1) ones (from j = n to j = (n − (n −m)) = m) will determine the coefficients of
s(x); the remaining m ones (from j = (m− 1) to j = 0) will fix r(x), which will have degree
up to (m− 1).

– For j = n downwards to j = m:

aj =
∑

0≤α≤m
0≤β≤(n−m)
α+β=j

bαcβ

For j = n, there is only one contribution: an = bmcn−m, which fixes cn−m.

For j = (n−1) (if m > 0), there are two contributions: an−1 = bm−1cn−m+ bmcn−m−1.
Since we know cn−m, we can plug this in and can fix cn−m−1.

1In fact, fractions of polynomials (rational functions) do constitute a field; polynomials are just rational functions
with denominator 1.
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And so forth: Each equation contains up to (1 + min{m, (n −m)}) contributions (de-
pending on the index ranges, and which of the polynomials q(x), s(x) has lesser degree),
including the product bmcj−m, and possibly coefficients of s(x) with higher index that
have already been fixed. cj−m is always the only unknown variable and can be fixed in
the current equation. This is always possible because bm 6= 0.

The last step fixes cm−m = c0; now, the polynomial s(x) has been determined.

– For j = (m− 1) downwards to j = 0 (although the order does not matter here):

aj = dj +
∑

0≤α≤m
0≤β≤(n−m)
α+β=j

bαcβ

Here, the dj are the unknowns, and there is also one per equation, allowing the dj to
be fixed one by one. All the cβ are already known from above.

After this (deterministic!) procedure, s(x) and r(x) have been uniquely determined.

The degree of s(x) is fixed as (n−m), but r may have lesser degree than (m− 1), if higher
d coefficients are zero.

If r(x) = (0), p(x) is reducible and q(x), s(x) are a pair of factors of p(x).

�

As an example, we calculate the division of p(x) = (1, 0, 0, 3,−2, 0, 1, 1) by q(x) = (1, 0,−4, 3).
Evidently, deg p(x) = 7 and deg q(x) = 3, which implies deg s(x) = (7− 3) = 4 and deg r(x) < 3.

The non-zero coefficients in p(x) and q(x) are:

a7 = 1, a4 = 3, a3 = −2, a1 = 1, a0 = 1, b3 = 1, b1 = −4, b0 = 3

We give the eight equations that determine the coefficients c4, · · · , c0 and d2, · · · , d0.

j = 7 : 1 = b3c4 = c4  c4 = 1
j = 6 : 0 = b2c4 + b3c3 = c3  c3 = 0
j = 5 : 0 = b1c4 + b2c3 + b3c2 = −4 + c2  c2 = 4
j = 4 : 3 = b0c4 + b1c3 + b2c2 + b3c1 = 3 + c1  c1 = 0
j = 3 : −2 = b0c3 + b1c2 + b2c1 + b3c0 = −16 + c0  c0 = 14
j = 2 : 0 = d2 + b0c2 + b1c1 + b2c0 = d2 + 12  d2 = −12
j = 1 : 1 = d1 + b0c1 + b1c0 = d1 − 56  d1 = 57
j = 0 : 1 = d0 + b0c0 = d0 + 42  d0 = −41

Thus:

(x7 + 3x4 − 2x3 + x+ 1) = (x3 − 4x+ 3) · (x4 + 4x2 + 14) + (−12x2 + 57x− 41)

E.2 Residue Rings and Residue Fields

We already mentioned the fact that (Z,+, ·) is a commutative ring with unity as an example for
the ring definition A.5 (p. 68). We now want to consider finite sets of numbers. The integers can
be partitioned into a finite set of residue classes when operating modulo some natural number. For
this, we introduce the concept of residue rings, for which we need only a few preparations:

Definition E.10 For m ∈ N, j ∈ Z, the set {j+ km|k ∈ Z} is called residue class of j modulo m,
denoted [j]m.

(If m is fixed, we omit the subscript “m” for residue classes.)

Definition E.11 For m ∈ N, the residue system of m, denoted Zm, is the set of possible residues
modulo m:

Zm = {0, 1, · · · , (m− 1)}

Strictly speaking, this is a bit hand-waving; the residue system formally should be the set of
residue classes. But no information is lost here, because if we operate modulo m, we may pick
any member of a residue class as its representative; and we opt to always choose the smallest
non-negative member.
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Lemma E.12 For m ∈ N, (Zm,+) is an Abelian group with identity 0 and (Zm, ·) is a semigroup.
For m > 1, (Zm, ·) is a monoid with identity 1.

Proof: We recall the definitions A.1, A.2 and A.3 on pp. 66f:

• Addition modulo m in Zm is commutative, associative and closed. The latter holds because
taking the modulus after addition always will project any number into Zm.

The identity element is 0 ∈ Zm, and any element j ∈ Zm has a unique additive inverse in
Zm: If j is zero, its inverse is 0 ∈ Zm. Any other j has inverse (m− j), which is an integer
between (exclusively) 0 and m, and thus (m− j) ∈ Zm.

• Multiplication modulo m in Zm is also commutative, associative and closed. Therefore,
(Zm, ·) is a semigroup.

• If m > 1, Zm contains at least 0 and 1, the latter being the identity of “·”. In that case, Zm,
therefore, is a monoid.

�

We omit the proof that multiplication distributes over addition in the familiar way in Zm and
conclude:

Corollary E.13 For m ∈ N, (Zm,+, ·) is a commutative ring (with unity, if m > 1).

For the following, we want to fix m > 1, because operating modulo 1 puts all integers in a single
residue class [0]; from there on, all previous numeric information is lost.

We now consider what restrictions we can place on m so that (Zm,+, ·) is not only a commu-
tative ring with unity but a full field. Recalling definition A.6 (p. 68), we need to ensure that any
j in Zm \ {0} has a multiplicative inverse modulo m.

In preparation, we consider co-primeness in a product of natural numbers:

Lemma E.14 a, b ∈ N are both co-prime with m ∈ N if and only if their product (ab) is co-prime
with m.

Proof: We show this equivalence in its negated form.

• If a or b are not co-prime with m, one of them (without loss of generality, let this be a),
shares a factor d > 1 with m per

a = αd ∧ m = βd

But then, (ab) contains the factor d too via ab = αdb. Thus, (ab) and m share the factor d,
and cannot be co-prime.

• If (ab) and m are not co-prime, they share a factor d > 1 per

ab = αd ∧ m = βd

We may assume that d is prime. If it were not, any factors could be absorbed into both α
and β. But, per Euclid’s lemma, if d is prime and divides (ab), then it must divide at least
one of its factors a, b: Since d is prime, the only way to spread d into a product such that a
and b may take up one factor each is d = 1 · d.

Thus, d is a factor af at least one of a, b, and not both a and b can be co-prime with m.

�

At this point we will have to take a closer look at gcd calculation, and establish the principles
of the Euclidean algorithm.

Lemma E.15 For a, b ∈ N, a ≥ b: gcd(a, b) = gcd(a− b, b).
Proof: Since a, b are (positive) natural numbers, they share a common divisor d, which is at least
1 (and exactly 1 if and only if they are co-prime). Of all common divisors, let d be the biggest
one. Then:

a = αd ∧ b = βd

with co-prime α, β ∈ N, α ≥ β.
Then, the difference (a − b) equals (α − β)d. Since α, β are co-prime (or they would share a

non-trivial factor that would need to be in d), no additional factor can be extracted from (α− β).
But then, d is also the gcd of (a− b) and b. �
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Corollary E.16 For a, b ∈ N, a = qb+ r, 0 ≤ r < b:

gcd(a, b) = gcd(a− qb, b) = gcd(r, b) = gcd(amod b, b)

Proof: Apply the lemma E.15 repeatedly, as long as its condition a ≥ b is met. This amounts to a
modulo operation. �

The modulo rule is useful for gcd calculation because, in this case, it is always obvious which one
of the gcd arguments is the greater one. If we take amod b, the result will be in {0, 1, · · · , (b− 1)}
but definitely less than b. This allows us to formulate a concise version of Euclid’s algorithm:

Lemma E.17 (Euclidean Algorithm) For a, b ∈ N, gcd(a, b) can be calculated in the following
way:

• Let M1 := max{a, b}, m1 := min{a, b}. Then, r1 := M1 modm1.

• For k > 1: Let Mk := mk−1, mk := rk−1.

Then, rk := Mk modmk, and gcd(Mk−1,mk−1) = gcd(Mk,mk).

• Terminate for any k ∈ N when rk = 0. Then, gcd(Mk,mk) = mk.

Proof: The iteration of gcd functions is valid as per corollary E.16. If the maximum of the gcd
arguments is a multiple of the minimum (including if they are equal, or if the minimum is 1),
the new remainder would be zero, and the next iteration would calculate the gcd of the previous
minimum and zero, which is the previous minimum because any natural number divides zero.

Each step of the algorithm will feature a minimum value mk that is less than in the previous
step, because of the modulo operation. The sequence of mk therefore is strictly monotonically
decreasing, but mk ≥ 0 for all steps. The value zero would be reached if we did the next iteration
step after rk = 0 has occurred. Thus, the algorithm must terminate after at most m1 steps. �

Corollary E.18 If a number a ∈ N is in the residue class [1]m for some m ∈ N, gcd(a,m) =
gcd(1,m) = 1.

Proof: a is either 1 (nothing further to do), or a = (km + 1) > m for some k ∈ N. Use the
Euclidean algorithm:

r1 = (km+ 1) modm = 1 �

With these preparations, we can prove the most important criterion we need to establish residue
fields:

Lemma E.19 j ∈ Zm \ {0} has a multiplicative inverse modulo m if and only if j and m are
co-prime, i.e. gcd(j,m) = 1.

Proof:

• If j ∈ Zm \ {0} has a multiplicative inverse modulo m, let us call this inverse ̃. Then, the
product j · ̃ is 1 (modulo m). Use corollary E.18 to establish that j · ̃ is co-prime with m.
Now we can use lemma E.14 from above and see that both j and ̃ are co-prime with m.

• If j is co-prime with m, then gcd(j,m) = 1. We could use Bezout’s identity

∃α, β ∈ Z : gcd(j,m) = αj + βm

to establish the existence of an inverse: Since gcd(j,m) = 1, this means that 1 = αj + βm.
If we take this equation modulo m, we obtain:

1 ≡ (α · j) mod m

Thus, the inverse of j exists and equals α (modulo m). We omit the formal proof of Bezout’s
identity here; it is short and can be found in any textbook on number theory. Instead, we give
a construction using the extended Euclidean algorithm, which actually delivers the values of
α, β, so that we can calculate j’s inverse.

For this, we can use an extension of the Euclidean algorithm E.17 from above. In any
algorithm step, we may extend the calculation rk := Mk modmk by stating that rk =
Mk − qkmk. In step 1, this directly allows us to express r1 in terms of (here) j and m.
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In step 2, we use M2 = m1 = j and m2 = r1, which was expressed in terms of j and m in
step 1. The factors for Bezout’s identity emerge after collecting the terms.

For higher steps, mk = rk−1 and Mk = rk−2, so rk can readily be expressed in terms of j
and m by looking up the previous two remainders (provided those have been expressed as
linear combinations of j and m).

After this extended Euclidean algorithm has terminated, we have found the inverse of j
modulo m, which is sufficient to show that such an inverse exists.

�
As an example, we consider gcd(19, 17), which is 1 because both numbers are prime. We find

the inverse of 17 (modulo 19), highlighting the M , m and r numbers:

19 = 1 · 17 + 2 ⇔ 2 = 1 · 19− 1 · 17
17 = 8 · 2 + 1 ⇔ 1 = 17− 8 · 2

= 17− 8 · (1 · 19− 1 · 17)
= (−8) · 19 + 9 · 17

2 = 2 · 1 + 0 terminate: r3 = 0

So, if we take the equation for r2 = 1 modulo 19, we obtain: 9 · 17 ≡ 1 mod 19, so the inverse of
17 (modulo 19) is 9. And, in fact 9 · 17 = 153, and 8 · 19 = 152.

We can now collect the preparations from above and state the following:

Corollary E.20 For m ∈ N, m > 1, (Zm,+, ·) is a field if and only if m is a prime number.

Proof: For this, any j ∈ Zm\{0} must have a multiplicative inverse, so that (Zm\{0}, ·) is a group.
The prime numbers are exactly the numbers in N that satisfy gcd(j,m) = 1 for 1 ≤ j < m. �

For example, we give the multiplication table of Z5 \ {0}:

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

E.3 Galois Fields

E.3.1 Remarks

It can be shown (e.g. [KM21], ch. 26) that finite fields are possible with exactly pk elements, where
p is prime and k ∈ N, and that all the various realizations with an equal number of elements are
isomorphic, i.e. equal up to a permutation of the element labels. These finite fields are often called
Galois fields, denoted GF (pk).

For the case k = 1, we can use the preceding section to argue that (Zp,+, ·) is a finite field
with p elements, so GF (p) ∼= Zp.

This will not work (cf. the preceding section) for k > 1, though, because pk is no longer prime.
But we can give an alternative construction, using polynomials. We follow [Hof14] for the details.
It is important to remember, that the numbers {0, 1, · · · , pk − 1} cannot be taken literally, but
as labels, or otherwise uniquely mapped to the actual elements. For instance, if 2 represents the
polynomial (2x + 1), the squared polynomial (4x2 + 4x + 1) may not be represented by 4 = 22,
but by some other number, maybe 7. Only for k = 1 can the labels from N0 represent themselves
as numbers.

We will lay out the principle of obtaining a realization of GF (pk) for fixed but arbitrary k > 1
and p, and consider the case pk = 24 as an example.

E.3.2 Preparations

We already mentioned the notion of (ir-)reducible polynomials in definition E.8, p. 108. In the
above section E.1, the field from where the coefficients are taken was kept unfixed deliberately:
We now examine polynomials over Zp:
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Lemma E.21 The ring of polynomials Zp[x] contains pk different polynomials of lesser degree
than k.

Proof: We temporarily view polynomials of degree up to (k−1) as full polynomials of degree (k−1),
i.e. we allow leading zeros in the coefficient tuple, which makes counting easier. We already stated
in definition E.1 (p. 107) that we may represent each polynomial by its coefficient tuple.

Now, if the field is finite (with p elements), a polynomial of degree (k − 1) has k coefficients.
Each of those k coefficients can take any of p values, making for pk different tuples. If we now
remove the leading zeros again, we are left with proper representations of polynomials with lesser
degree. �

In anticipation of the later example, we list the polynomials with degree less than 4 over Z2.
We also provide their tuple representations (with leading zeros, but without commas or brackets)
and the numbers in N0 they code for:

0 0000 0 x3 1000 8
1 0001 1 x3 + 1 1001 9
x 0010 2 x3 + x 1010 10

x+ 1 0011 3 x3 + x+ 1 1011 11
x2 0100 4 x3 + x2 1100 12

x2 + 1 0101 5 x3 + x2 + 1 1101 13
x2 + x 0110 6 x3 + x2 + x 1110 14

x2 + x+ 1 0111 7 x3 + x2 + x+ 1 1111 15

Table E.1: Polynomials with degree less than 4 in Z2[x], with tuple representations

If we concatenate the coefficients, we get binary (in general: p-ary) strings which code for
numbers in N0 – here, 0 up to (16− 1) = 15.

In fact, if we take the product of the polynomials coded by 2 and 3, respectively (binary 10 and
11), the result is the polynomial coded by 6 (binary 110). This is possible because we labeled the
polynomials in a consistent way: plugging in the number 2 (in general: p) for the argument x, the
polynomial functions labeled this way return just the numbers that the binary (p-ary) coefficient
strings encode.

However, this will not work in this simple way for all combinations: half the polynomials are
degree three, and could only be multiplied with 1 or 0 to stay within the set. Multiplying them
with any higher-degree polynomial yields degrees of up to 6.

When examining the multiplicative groups of the finite fields Zp, we always performed mul-
tiplications modulo p. It turns out that the same is possible for polynomials as well, by way of
polynomial division as in lemma E.9 (p. 108), – only that the modulus needs to be a polynomial,
not a number.

In fact, the polynomial division with remainder polynomials is the exact equivalent of arithmetic
integer division with remainder. Both are called “Euclidean division”.

For Zp we then considered the remainders (and their residue classes) modulo p as the elements
of our finite fields – in the same way, we can view the remainders of polynomial division by a
(fixed) modulus polynomial as elements of the Galois fields. Since Euclidean division is possible
for numbers and for polynomials in the same way, the concepts of co-primeness, greatest common
divisor, and the (extended) Euclidean algorithm can be transferred as well; thus, all the remarks
from the previous section can be translated into equivalent concepts for polynomials.

We may therefore forgo a detailed repetition of our previous observations and concentrate more
on the practical differences.

One of the key insights in the previous section was that in order for the ring to become a proper
field requires that each element other than zero should have its unique multiplicative inverse (mod-
ulo p, or, in this case our modulus polynomial). We found that only the prime numbers (and all
the prime numbers) could be suitable moduli for the integers. The equivalent notion of a prime
number would be, in our case, an irreducible polynomial, i.e. one that has no factors of lesser degree
except (1) – and therefore would be co-prime with all those polynomials of lesser degree. If we
now find such a polynomial of degree k, we can use Bezout’s identity via the extended Euclidean
algorithm to determine each element’s multiplicative inverse. Any irreducible polynomial of degree
k will do for that purpose.
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Considering our example, we should point out that the polynomial x4 corresponding to the
number 16 would be of degree 4, but could not serve as a modulus polynomial because it has
factors, e.g. x, and thus is not co-prime with all the polynomials of lesser degree than 4. We will,
in the next subsection, find that there are polynomials of degree 4 that qualify as modulus – in fact,
there is more than one. This is a difference to the Zp case, because when dealing with numbers
there always was exactly the modulus p.

Lemma E.22 The modulus polynomial m(x) of degree k, which is used to restrict multiplication
in GF (pk) to polynomials with degree less than k, must be irreducible.

Proof: If GF (pk) is a field, all non-zero elements must have unique multiplicative inverses. Assume
that m(x) = f1(x) · f2(x), then those factors have degree less than k. We consider their inverses,
and use the fact that f1(x) · f2(x) ≡ 0 mod m(x):

0 = f−1
1 (x) · 0 = f−1

1 (x) · f1(x) · f2(x) = 1 · f2(x) = f2(x)

0 = 0 · f−1
2 (x) = f1(x) · f2(x) · f−1

2 (x) = f1(x) · 1 = f1(x)

So, if the inverse elements of f1(x), f2(x) exist, this implies that f2(x), f1(x) are zero, respectively,
which cannot be unless the whole m(x) were zero. Therefore, m(x) needs to be irreducible. �

Corollary E.23 The modulus polynomial m(x) for GF (pk) may not have zero as its x0 coefficient.

Proof: If that coefficient were zero, the polynomial would contain a factor of x, and thus be
reducible. �

We omit the proof that one can always find an irreducible polynomial in Zp[x] for any degree k.
While we will present a method to obtain an irreducible polynomial, without this proof our method
will necessarily stay optimistic.

E.3.3 Construction Example

As indicated above, we present the case of GF (24), the finite field with 16 elements. The elements
consist of the 16 polynomials with degree less than 4, and the coefficients are from Z2 = {0, 1}
For the coefficients, this means that adding and subtracting amount to the same operation since
1 + 1 ≡ 0 mod 2; this also holds for polynomials in Z2[x] because they are added component-wise.

Definition E.24 For k ∈ N, p prime, the Galois field GF (pk) is isomorphic to Zp[x]m(x), for
a given (and fixed) irreducible modulus polynomial m(x) with degree k. Addition in Zp[x]m(x) is
executed component-wise, and modulo p per component. Multiplication in Zp[x]m(x) is executed
modulo m(x) in order to obtain polynomials of degree less than k.

Finding an Irreducible Polynomial for the Modulus

In order to establish a multiplication table, we first need to find one irreducible polynomial m(x) =
(m4,m3,m2,m1,m0) of degree 4 (cf. lemma E.22). According to corollary E.23, the component m0

may not be zero; in the case of Z2 this already fixes m0 = 1. We can employ the same argument
for m4, because m4 6= 0 for degm(x) = 4; thus, m4 = 1.

We now fix the remaining three coefficients (which afford eight possibilities) in a systematic
way, by eliminating all the possible candidates that are in fact reducible polynomials.

In order to detect the reducible polynomials, we consider all products of lesser-degree poly-
nomials that conform to our previous restrictions. In this case, we have to look at factor degree
combinations (1, 3) and (2, 2) (only those will yield a product of degree 4), and we also can confine
ourselves to factors ending with an x0 coefficient of 1, because only those can yield m0 = 1 for the
product. (There would be more possibilities and fewer restrictions (relatively) in case p > 2.)

For the degree combination (1, 3), there is only one factor with degree 1 to consider, namely
(x+ 1), and four factors with degree 3, all of which we can obtain from table E.1 (p. 113). For the
degree combination (2, 2), we find two possible factors, which we can multiply in three ways: each
with itself, and one with the other.

We execute the multiplications in tuple notation (without brackets or commas), like an integer
multiplication done manually on paper. When summing the intermediate results, only the columns
with odd parity (i.e. the number of ‘1’ bits) yield 1; the others, zero, because of Z2 arithmetic.
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11 · 1001 =
1001

+ 10010
11011

11 · 1011 =
1011

+ 10110
11101

11 · 1101 =
1101

+ 11010
10111

11 · 1111 =
1111

+ 11110
10001

101 · 101 =
101

+ 10100
10001

101 · 111 =

101
+ 1010
+ 10100

11011

111 · 111 =

111
+ 1110
+ 11100

10101

This yields five distinct reducible polynomials: 11011, 11101, 10111, 10001 and 10101. The
other three remaining polynomials of degree 4 therefore must be irreducible: 10011, 11001 and
11111.

Creating the Multiplication Table

For this example of GF (24), we want to take the following irreducible polynomial as modulus:

m(x) = (x4 + x+ 1) = 10011

The multiplication table of Z2[x]m(x)\{0} will have 152 = 225 entries, but since it is symmetric,
only 15 · 16/2 = 120 equations have to be solved. Of those, 15 are trivial because they are
multiplications with 1, and another six are easy because multiplication with 10 amount to shifts
for polynomials whose four-bit representation starts with a zero. Another five equations involve
multiplication with 11 and polynomials with bit representations with a leading zero. Those 26
equations do not involve taking the modulus, because the products are still of degree less than
four, and we recall the first case of lemma E.9 (p. 108) about polynomial division, which states
that the remainder when dividing by m(x) must then just be that product. For these cases,
multiplication may be carried out exactly as above (when searching for an irreducible polynomial).

The remaining 94 non-trivial equations will involve taking the modulus after calculating the
product, i.e. we calculate the product, then divide it by m(x) in a polynomial division2, and take
the remainder polynomial (which will have a degree less than four) as result.

We give one example for such a multiplication, namely the product of 6 and 13, i.e. the poly-
nomials 110 and 1101. First, the product:

110 · 1101 =
11010

+ 110100
101110

This is a polynomial of degree five. We take the remainder modulo m(x), i.e. we calculate

101110 = 10011 · (?) + r(x),

where we ignore the quotient completely and just collect r(x). In Z2[x] we only ever can subtract
the modulus, which amounts to adding it, which is an xor operation on the binary bits. For p > 2,
the arithmetic would be a bit more involved.

101110 = 10011 · (?) + r(x)
− 10011

001000

2In fact, this procedure can be simplified by using Horner’s Rule for polynomials, as explained in [Hof14],
subsection 2.4.3. This spreads the multiplication to successive additions and multiplications with x = 10, and
taking the modulus several times and as soon as necessary. Thus, one would only have to deal with case 2 of the
polynomial division (cf. lemma E.9, p. 108), and the remainder could be obtained by one subtraction.
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Here, we only had to subtract the modulus once; the remainder is r(x) = 1000 = x3, a polynomial
of degree three, coding for the number 8 in our above table E.1 (p. 113).

In this way, the whole multiplication table can be calculated. The table does, however, depend
on the choice of m(x), the irreducible modulus polynomial.

If we identify the polynomials with their coefficient strings and the p-ary numbers from N0

associated with those codes, it is evident that the various multiplication tables can be reshuffled
with permutations, and that all the Zp[x]m(x) are isomorphic to each other.

E.3.4 The Special Case k = 1

It is possible to construct Galois fields with p1 = p elements with polynomials in the same way we
described above – but we can quickly demonstrate that this yields no new information, other than
that we could label the polynomials of degree less than 1 (i.e. numbers in {0, · · · , (p−1)}) in some
permuted way and obtain an isomorphic field with p elements.

Let us consider the case p = 5. We now need an irreducible modulus polynomial of degree 1,
whose components m1 and m0 are non-zero. There are sixteen different such polynomials, from
x+ 1 to 4x+ 4. Each of them is irreducible because a polynomial of degree 1 could not be factored
by multiplying two numbers, and while e.g. 4x+ 2 equals (2) · (2x+ 1), (2) is not a proper factor
when considering reducibility, as the factors should be non-constant (cf. definition E.8, p. 108), i.e.
at least of degree 1.

The polynomials that would be the elements of the field GF (5) are none other than (0), · · · , (4),
the five polynomials of lesser degree than 1.

Multiplying such polynomials yields just the product of two numbers, modulo p, so (3)·(3) = (4).
The choice of modulus polynomial is irrelevant here because the modulus has higher degree (cf. the
first case in lemma E.9, p. 108), and any of the sixteen moduli would yield (4) ≡ (4) mod m(x).
All the various degree-1 irreducible polynomials therefore produce the same multiplication table.

Thus, GF (p1) is isomorphic with Zp, which at least demonstrates consistency – although we
could not have done our GF (pk) construction at all if we had not already accepted Zp as fields
(for the polynomial coefficients), so this observation is tautological.
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Appendix F

Java Algorithm for Isoperimetric
Constants

For the isoperimetric constant of an undirected graph G = (V, e), we need to consider all bi-
partitions of its node set, and remember both the number of connecting edges between S and
S̄ = V \ S and the node count of the smaller (or at least, not larger) partition. In order to avoid
double calculations, one can restrict S ≤ |V |/2. For the purpose of documentation, it is also helpful
to remember the precise subset S in some form.

We store this information in objects of type IsoperimetricDataEntry (lines 2ff.). While loop-
ing over all possible subsets, those entries are collected in a sorted set of type TreeSet (lines 13ff.),
such that they are ordered ascending in the quotients of e(S, S̄)/|S|. In order to avoid floating
point arithmetic, the comparator of two entries only evaluates the numerators of the two fractions
after converting them to a common denominator (line 19).

For each partition of V , two sets are populated according to the bits in an int number – this
is possible because the Graph objects have a maximum node count of 30 < 32 (because of the
exponential execution time, graphs with more than twenty nodes are rather time-consuming to
process on a private computer, so this restriction is in fact acceptable in practice).

The loop is executed in order to consider all bit patterns from 00 . . . 01 to 11 . . . 11, avoiding the
number 0 where no bit is set. If a bit is set, its corresponding node index is added to the selected
subset; otherwise it belongs to the set complement. Because of the maximum node count, no
unwanted effects due to 2-complement integer encoding have to be considered.

After the sets have been populated, the edges between S and S̄ are counted (lines 51ff.), which
involves iterator calls because the Java Set are not originally intended for entry traversal.

The main function returns the smallest IsoperimetricDataEntry of the TreeSet structure,
which corresponds to the smallest quotient of e(S, S̄)/|S|.

The following page shows an excerpt of the Java class used to calculate several isoperimetric
constants for toy examples (with some boilerplate code removed). The type Graph is omitted
here because it contains nothing algorithmically interesting – it is just a wrapper for an adjacency
matrix with various access methods and a String output. Calls to the Graph type are in lines 10
(to retrieve the graph’s node count) and 60f (to access the adjacency matrix element).
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1 public class Isoperimetric {

2 public static class IsoperimetricDataEntry {

3 private int subsetSelectors;

4 private int subsetSize;

5 private int edgeCount;

6 // getters , setters , toString

7 }

8
9 public static IsoperimetricDataEntry calculateIsoperimetricConstant(Graph g) {

10 int nodeCount = g.getNodeCount ();

11
12 // prepare a sorted set of various subsets

13 SortedSet <IsoperimetricDataEntry > isoperimetricEntries

14 = new TreeSet <>(new Comparator <IsoperimetricDataEntry >() {

15
16 @Override

17 public int compare(IsoperimetricDataEntry o1 ,

18 IsoperimetricDataEntry o2) {

19 return (o2.subsetSize * o1.edgeCount - o1.subsetSize * o2.edgeCount );

20 }

21
22 });

23
24 Set <Integer > subset = new HashSet <>();

25 Set <Integer > complement = new HashSet <>();

26
27 // loop over all possible subsets (represented as binary flags in an int)

28 for (int subsetSelectors = 1;

29 subsetSelectors < (1 << nodeCount ); subsetSelectors ++) {

30
31 // initialize sets

32 subset.clear ();

33 for (int j = 0; j < nodeCount; j++) {

34 complement.add(j);

35 }

36
37 // populate sets

38 int setSize = 0;

39 int node = 0;

40 while (node < nodeCount && setSize < (nodeCount / 2)) {

41 if (( subsetSelectors & (1 << node)) != 0) {

42 subset.add(node);

43 complement.remove(node);

44 setSize ++;

45 }

46 node ++;

47 }

48
49 // determine edge count between subset and complement ,

50 // and add data entry to the sorted set

51 if (setSize > 0) {

52 int edgeCount = 0;

53 Iterator <Integer > subsetNodes = subset.iterator ();

54 Iterator <Integer > complementNodes;

55 int subsetNode;

56 while (subsetNodes.hasNext ()) {

57 subsetNode = subsetNodes.next ();

58 complementNodes = complement.iterator ();

59 while (complementNodes.hasNext ()) {

60 edgeCount += g.getAdjacencyInternal(subsetNode ,

61 complementNodes.next ());

62 }

63 }

64 IsoperimetricDataEntry dataEntry = new IsoperimetricDataEntry ();

65 dataEntry.subsetSelectors = subsetSelectors;

66 dataEntry.subsetSize = setSize;

67 dataEntry.edgeCount = edgeCount;

68 isoperimetricEntries.add(dataEntry );

69 }

70 }

71
72 return isoperimetricEntries.isEmpty () ? null : isoperimetricEntries.first ();

73 }

74 }
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