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Abstract

Accurate human pose estimation in cases where the subject is partially truncated or occluded
remains challenging. This study explores methods to improve human pose estimation under
truncation conditions. Segmentation-guided attention and multi-layer segmentation condi-
tioning (ControlNet) using body part segmentations as auxiliary information are evaluated in
both HRNet, a convolutional neural network, and Sapiens-0.3B, a transformer-based model. A
3D scanner dataset, capturing only partially visible poses, was annotated in this study to serve
as a test dataset for evaluating performance in challenging real-world scenarios. Results show
that the chosen segmentation-based approaches, segmentation attention and ControlNet, yield
moderate improvements in average precision by providing structural cues but do not consis-
tently enhance fine-grained keypoint localization when significant portions of the body are
missing. While no significant performance gains for human pose estimation under truncated
conditions is achieved by either segmentation-guided attention or ControlNet, ControlNet
offers slight advantages over single-stage segmentation attention, suggesting that multi-layer
segmentation methods help models by incorporating the additional spatial context at multiple
processing stages, allowing them to infer more plausible keypoint locations in partially visible
poses.

In contrast, augmented training data, including truncated images, provides consistent per-
formance gains by exposing the model to partial-pose inputs during training. These findings
highlight the need to ensure that the training data closely reflects real-world conditions to
improve model performance. While refining segmentation granularity and implementing
adaptive weighting mechanisms could improve the model’s ability to handle partial poses,
significant truncation can still limit the usefulness of segmentation information. Further re-
search should explore whether increasing the detail and precision of segmentation maps can
provide more meaningful structural cues for pose estimation in truncated conditions and how
this translates to human pose estimation under occlusion. Additionally, to achieve the most
significant performance gains, future work should develop more advanced data augmentation
techniques that better simulate partial poses and analyze the distribution of missing body parts

due to truncation to optimize augmentation strategies accordingly.
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Kurzfassung

Die exakte Schiatzung menschlicher Posen stellt eine Herausforderung dar, insbesondere bei
Personen, die teilweise abgeschnitten oder verdeckt sind. Diese Studie untersucht Methoden
zur Optimierung der menschlichen Posenschatzung in solchen Fallen. Zu diesem Zweck werden
segmentierungsbasierte Aufmerksamkeitsmechanismen (Segmentation-Guided Attention) und
Multi-Layer-Segmentierungs-Konditionierung (ControlNet) mit Korperteil-Segmentierungen
als zusétzliche Information evaluiert. Die Evaluierung erfolgt sowohl in HRNet, einem faltenden
neuronalen Netzwerk, als auch in Sapiens-0.3B, einem transformerbasierten Modell. Zur
Leistungsbewertung wird ein 3D-Scanner-Datensatz verwendet, der ausschlie8lich Bilder von
teilweise sichtbaren Posen enthélt und im Rahmen dieser Studie annotiert wurde.

Die Resultate demonstrieren, dass die segmentierungsbasierten Ansitze Segmentation Atten-
tion und ControlNet moderate Verbesserungen der durchschnittlichen Prézision erméglichen,
indem sie strukturelle Informationen bereitstellen. Jedoch resultieren sie nicht in einer konsis-
tent besseren Keypoint-Lokalisierung, wenn wesentliche Kérperregionen fehlen. In Féllen teil-
weiser Sichtbarkeit zeigen weder Segmentation-Guided Attention noch ControlNet signifikante
Leistungssteigerungen, jedoch weist ControlNet leichte Vorteile gegeniiber der einstufigen
Segmentation Attention auf. Dies legt nahe, dass Multi-Layer-Segmentierungsmethoden durch
zusétzliche raumliche Kontextinformationen plausiblere Keypoints ableiten konnen.

Die Verwendung von erzeugten oder erweiterten Trainingsdaten, die explizit abgeschnittene
Posen enthalten, resultiert in einer konsistenten Leistungssteigerung, da das Modell gezielt
auf partielle Posen trainiert wird. Dies betont die Relevanz einer realitdtsnahen Verteilung der
Trainingsdaten. Eine Verfeinerung der Segmentierungsgranularitit sowie adaptive Gewich-
tungsmechanismen konnten die Verarbeitung partieller Posen weiter optimieren. Allerdings ist
der Nutzen segmentierungsbasierter Informationen bei stark abgeschnittenen Posen begrenzt.
Zukinftige Forschung sollte daher untersuchen, inwiefern prazisere Segmentierungsmasken
relevante strukturelle Hinweise liefern und wie sich dies auf verdeckte Posen auswirkt. Dariiber
hinaus sollten fortschrittliche Datenverarbeitungstechniken entwickelt werden, um partielle
Posen besser zu simulieren und die Verteilung fehlender Korperteile fiir optimierte Augmenta-

tionsstrategien zu analysieren.






Notation

Acronyms
AP Average Precision
AR Average Recall
BCA Body-Cropping Augmentation
COCO Common Objects in Context
CNN Convolutional Neural Network
CPN Cascaded Pyramid Network
FFN Feed-forward Network
FPN Feature Pyramid Networks
HPE Human Pose Estimation
HRNet High-Resolution Network
IoU Intersection over Union
MAE Masked Autoencoder
NLP Natural Language Processing
OKS Object Keypoint Similarity
PCK Percentage of Correct Keypoints
PPNet Position Puzzle Network
ReLU Rectified Linear Unit
SOTA State-of-the-Art

ViT

Vision Transformer
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1 Introduction

Human pose estimation is a foundational task in computer vision, which involves detecting
and estimating the spatial configurations of human bodies in images or videos. This field has
gained significant attention in recent years due to advancements in machine learning and
deep learning, leading to enhanced estimation of human postures, gestures, and movements
[Gao+25]. Determining the positions of key anatomical body points and limbs enables the

interpretation of human actions in a wide range of applications.

Pose estimation is crucial in several domains, including healthcare, sports, entertainment,
and security. In healthcare, it enables remote physical therapy and rehabilitation by allowing
practitioners to monitor patient movements [LVX20]. In sports analytics, pose estimation
aids in performance evaluation and the biomechanical analysis of athletes [BM21]. The en-
tertainment industry uses pose estimation to create realistic animations and improve virtual
and augmented reality experiences by improving immersion and interactivity [AP22]. More-
over, human-computer interaction benefits from pose estimation by enabling more natural
and intuitive user interfaces, leading to closer interaction between humans and machines
[Bau+15]. In security and surveillance, enhanced pose estimation techniques contribute to

activity recognition and threat detection by analyzing human actions more precisely [Zan+23].

Significant progress has been made in the past decade, but several challenges remain. One
major obstacle is the variability in human appearances, including differences in clothing, body
shapes, and sizes, which complicates model generalization to accommodate all differences and
still make accurate predictions. Environmental factors, including different lighting conditions,
camera angles, and cluttered backgrounds further impact accuracy [Jia+24]. Additionally,
occlusions and truncated poses pose significant difficulties. While truncated poses result in
the complete absence of body parts from the image, occluded poses may still be estimated
using prior knowledge of human anatomy. However, accurately predicting occluded body

parts remains challenging for state-of-the-art models [Han+25].

As research in human pose estimation progresses, addressing these challenges is important

to enhance model robustness.



2 1 Introduction

1.1 Objective and Motivation

The primary objective of this study is to enhance the performance of human pose estimation
models in scenarios where poses are only partially visible due to truncation. This is realized
by integrating body part segmentation, which provides anatomical context, into the model
pipeline, to enhance model robustness. By incorporating segmentation, the models gain a
structured understanding of human anatomy, enabling more accurate estimations even when
key body parts are missing or occluded.

A central component of this research is the creation of annotations for a task-specific test
dataset. The image data was previously captured using a specialized multi-camera setup
consisting of 16 cameras arranged in a 3D scanning configuration. This configuration results
in images where human poses are only partially visible in individual frames, as shown in
Figure 1.1, which poses significant challenges for pose estimation models. As part of this study,
manual annotations are created for these images to ensure accurate labeling of the test dataset.

The multi-camera 3D scanning setup allows capturing of human poses from multiple angles
and perspectives, ensuring a comprehensive and challenging dataset for evaluating model
performance. By systematically analyzing the impact of truncations, this study contributes to

the development of more robust and generalizable human pose estimation techniques.

Figure 1.1: Images captured using the 3D scanner setup.

1.2 Environment

The research in this study is undertaken at the Intelligent Systems Research Group (ISRG),
a research institute of the Hochschule Karlsruhe - University of Applied Science. The ISRG

specializes in machine learning, computer vision and optimization, driving both theoretical
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advances and practical applications. Its research results are integrated into industrial and
economic sectors, strongly focusing on 3D modeling, computer vision, materials science, and
manufacturing processes. In addition, the group explores fault diagnosis, anomaly detection,

and optimization to improve system efficiency and reliability.

1.3 Structure

This document is structured into five chapters beyond the introduction. Chapter 2 lays the
foundational concepts of human pose estimation, introducing different deep learning based
methods and data augmentation techniques to help model generalization. Chapter 3 reviews
the state-of-the-art methods and related work important in this research. In Chapter 4, the
methodology of this study is presented, detailing the experimental design and methods. Chap-
ter 5 discusses the outcomes of the experiments, presenting both the raw results and an
in-depth analysis to interpret the findings. The final chapter, Chapter 6, concludes the study,

summarizing the key discoveries and proposing potential avenues for future research.






2 Basics

This chapter lays the foundation for understanding the core principles and methods central
to this research and provides a comprehensive overview of key concepts in 2D human pose
estimation and related areas. The chapter begins with an introduction to human pose esti-
mation (HPE), focusing on keypoint-based 2D pose estimation from monocular images. This
foundational section sets the stage for exploring different approaches to pose estimation, in-
cluding top-down, bottom-up, regression-based, and heatmap-based methods. Each approach
is discussed in detail, highlighting its strengths and applications. The chapter then delves into
three deep learning-based methods commonly used in HPE: Convolutional Neural Networks
(CNNgs), Vision Transformers (ViTs) and Masked Autoencoders (MAEs). These methods are
analyzed regarding their architectural designs, advantages and relevance to pose estimation
tasks, providing insight into their contributions to the field. The discussion then shifts to seg-
mentation, with particular emphasis on body part segmentation. Finally, the chapter concludes
with an examination of data augmentation techniques. The importance of data augmentation
in human pose estimation is highlighted, and selected techniques are presented to demonstrate

their impact on model performance.

2.1 Human Pose Estimation

Human Pose Estimation (HPE) aims to estimate the pose of the human body, typically in images
or video sequences. HPE finds applications in different fields, including action recognition,
human-computer interaction, virtual and augmented reality, and the security sector. Generally,
HPE can be classified into 2D pose human estimation and 3D pose human estimation, with the
former focusing on detecting human poses within a two-dimensional plane, such as an image,
while the latter aims to estimate poses in three-dimensional space [Zho+23].

Different representations of the human body have been proposed [Knaz4]. These represen-
tations can be categorized into three primary models: the kinematic, planar and volumetric
models [Zho+23]. The kinematic model, which is the most widely used, represents the human
body through joint or keypoint positions and limb orientations, effectively capturing its struc-

ture. An example of such a representation is shown in Figure 2.1. These keypoints are most
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often anatomical joints of the human body (e.g., shoulders, elbows, wrists, hips, knees, and
ankles), but can also include other points such as the nose, eyes, and more.

The keypoints and connections between them can be interpreted as a graph with nodes and
edges connecting the nodes and allow for the modeling of different poses and configurations

of the human body, providing a flexible and efficient representation.

=

Figure 2.1: Kinematic model-based pose representation of an image from the MS COCO
dataset [Lin+15].

Alternative representations include the planar model, which uses rectangles to approximate
body shape and appearance, and the volumetric model, which employs mesh data to capture
finer body shape details. While these approaches may provide more detailed representations,
they also introduce higher computational complexity [Gao+25]. However, in many practical
applications, the kinematic model remains the preferred choice due to its balance between
simplicity and accuracy.

2D pose estimation methods can generally be categorized into top-down and bottom-up
approaches [Lan+23; Zho+23]. In top-down methods, the process begins with detecting each
person in the image by identifying a region, known as a bounding box, that closely encapsulates
the individual. Once detected, keypoints are estimated within each bounding box to determine
the person’s pose. Conversely, bottom-up approaches first detect all keypoints across the entire
image before grouping them into individual poses. This method avoids the need for an initial
person detection step, instead focusing on grouping detected keypoints into coherent human
figures.

Despite major breakthroughs, 2D HPE still faces challenges due to occlusion, challenging
backgrounds, and variability in human appearances. Modern deep learning techniques, such as
CNNs and Transformer-based architectures have shown substantially improved performance

by learning robust feature representations from large datasets [Lan+23].
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Figure 2.2: lllustration of the VGG16 [SZ15] architecture,' showcasing its sequential deep con-
volutional layers, pooling operations, and fully connected layers.

2.2 Deep Learning-Based Methods

Early approaches to HPE primarily relied on handcrafted features. However, recent advance-
ments in deep learning have had a significant impact on the field, leading to more accurate
and robust detection of keypoints in images [Kna24].

This section introduces three prominent deep learning-based methods for HPE: Convolu-

tional Neural Networks, Vision Transformers, and Masked Autoencoders.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have demonstrated remarkable success for several
computer vision tasks, including image classification, object detection and human pose esti-
mation [Sun+19; NYD16]. They apply local receptive fields (convolutions) to learn spatially
correlated features at different scales and depths [Lec+98; KSHiz]. By hierarchically extracting
relevant information, CNNs can detect complex structures in images while preserving spatial
relationships. Figure 2.2 shows the VGG16 [SZ15] model architecture, showcasing its sequential
convolutional layers, pooling operations, and fully connected layers. This model is widely

used for image classification and feature extraction in deep learning applications.

Core Building Blocks of a CNN

A CNN consists of multiple hierarchical layers, each responsible for different levels of feature

extraction. The most fundamental component is the convolutional layer, where filters (or

1 VGGi6 figure by hongvin: https://github.com/hongvin/Neural-Network-Architectures-in-LaTeX
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Kernels) are applied to extract spatial patterns from the input. Mathematically, a convolution

operation at layer [ is defined as:

F; = O'(Wl *F_1 + bl) (2.1)

where F; represents the feature map, W; and b; are the trainable filter weights and bi-
ases, respectively, and o(+) is a non-linear activation function such as the Rectified Linear
Unit (ReLU) [KSHi2]. These filters allow CNNs to capture local spatial dependencies while
maintaining translation invariance.

To introduce non-linearity, activation functions are applied after convolutions. The most

commonly used function is ReLU, defined as:

f(x) = max(0, x) (2.2)

ReLU improves gradient propagation and helps mitigate the vanishing gradient problem,

allowing for deeper network architectures.

Pooling and Downsampling

Pooling layers are used to progressively reduce the spatial dimensions of feature maps while
preserving important information. The two most common types are max pooling and average
pooling. Max pooling selects the highest value within a given window, while average pooling
computes the mean value of all values in the window. Pooling ensures that small translations
in the input image do not drastically change feature representations.

While pooling layers reduce computational complexity and help in generalization, excessive
downsampling can lead to loss of information. To address this, alternative techniques such
as strided and dilated convolutions have been introduced, allowing networks to maintain

high-resolution feature maps while controlling the receptive field size.

Fully Connected Layers and Output

After a series of convolutional and pooling operations, the extracted feature maps are flattened
and passed through fully connected layers, which perform high-level reasoning and classifi-
cation. Each neuron in a fully connected layer is connected to every neuron in the previous
layer. In human pose estimation, the output layer predicts keypoint coordinates representing

body joints, often using regression or heatmap-based techniques.
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Hierarchical Feature Learning in CNNs

One of the strengths of CNNss is their ability to learn hierarchical representations due to their
architecture. Early layers typically detect simple features such as edges, textures, and small
patterns. With increasing depth, the network captures more complex structures, including
shapes and body parts, ultimately leading to high-level semantic understanding. This hierar-
chical feature extraction is beneficial for human pose estimation, where precise relationships

between body joints must be inferred.

Architectural Variants and Their Relevance to Pose Estimation

While early CNN architectures like AlexNet [KSHi2] and VGG [SZ15] demonstrated the poten-
tial of deep learning on large-scale datasets, their direct application to human pose estimation
posed challenges. Standard CNNs struggle with capturing multi-scale information, handling
occlusions, and ensuring efficient gradient flow in deeper network architectures.

To address these issues, several architectural improvements have been introduced. Increasing
CNN depth often leads to vanishing gradients (where gradients become too small during
backpropagation, preventing effective weight updates), limiting learning. ResNet [He+16]

mitigates this issue by introducing identity-based skip connections:

y=x+f(x) (2.3)

which allows gradients to flow more effectively through the network, enabling deeper
architectures.

Another challenge in pose estimation is efficient feature reuse. DenseNet [Hua+17] addresses
this by connecting each layer to all preceding layers. This promotes feature reuse, helping
pose estimation networks learn shared representations across joints and reducing overfitting,
but it also increases the computational complexity.

Since body parts appear at varying scales, multi-scale feature learning is essential. Feature
Pyramid Networks (FPN) [Lin+17] and Hourglass Networks [NYD16] tackle this by aggregating
information across different resolutions, improving robustness in detecting keypoints under
varying conditions.

Finally, retaining high-resolution spatial details is important for precise keypoint localization.
HRNet [Sun+19] uses multiple branches with different resolutions, maintaining high-resolution
feature maps throughout the network instead of downsampling early in the architecture. This
approach preserves fine-grained spatial information, improving the detection of small joints.

These advancements have significantly enhanced CNN-based human pose estimation, mak-
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ing them more robust and accurate in real-world applications.

2.2.2 Vision Transformer

Transformer [Vas+23] were originally designed for sequence modeling in natural language
processing (NLP). The success in language tasks, coupled with the increased compute capabil-
ities of GPUs have paved the way for Vision Transformer (ViT) [Dos+21], which use global

self-attention instead of convolutions.

Transformer Architecture

The Transformer model, introduced by Vaswani et al. in Attention is All You Need [Vas+23] on
which the following introduction to Transformer is based on, has revolutionized various fields,

including NLP and computer vision through its self-attention mechanism.

Qutput
Probabilities

Softmax

Linear

Add & Norm

Feed
Forward

Add & Norm Je~

[ Add & Norm | .
AEL S NI Multi-Head
Feed Attention
Forward D) Nx
—
Nix Add & Norm
(—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
L 4
o J U ——' )
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 2.3: Architecture of the Transformer model, adapted from [Vas+23].
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A Transformer, as illustrated in Figure 2.3, consists of two main components: an encoder
(left) and a decoder (right), each composed of a stack of N identical layers.

The encoder layers have three main components: a multi-head self-attention mechanism, a
fully connected feed-forward network (FFN), and layer normalization with residual connections.
Each encoder layer processes input embeddings using self-attention to capture relationships
between tokens, followed by the FFN to enhance feature representations. The decoder layers
introduce an additional component: a masked multi-head attention mechanism that attends to
the encoder’s output while ensuring that predictions at position i only depend on previously

generated outputs.

Input Embeddings and Positional Encodings

Before being processed by the Transformer, the raw input data must converted into a numerical
representation that the model can process. This is achieved through input embeddings, which
transform discrete tokens (e.g., words in NLP or patches in vision tasks) into continuous vector
representations in a high-dimensional space. Given an input sequence of tokens, each token
is mapped to a corresponding embedding vector using an embedding matrix learned during

training. Mathematically, for an input sequence X, the embeddings are obtained as follows:

E =XWg (2.4)

where Wg is the learned embedding matrix, and E represents the resulting sequence of
embeddings. These embeddings capture semantic relationships between tokens, allowing the
model to process complex patterns in the data.

Since the Transformer processes tokens in parallel rather than sequentially, it does not
inherently encode the order of elements in a sequence. To address this, positional encodings
are added to the input embeddings, providing explicit information about token positions in the
sequence. The positional encoding vector PE(pos) is computed using sinusoidal functions as

follows:

PE = sin|—E2
(pOS,Zi) = s IOOOOZi/dmOdEI (2‘5)

pos ) (2.6)

PE(pOS,2i+l) = Cos (m

where pos is the position of the token in the sequence, i is the dimension index, and dpodel is
the total dimensionality of the embeddings. The alternating sine and cosine functions ensure

that the positional encodings produce unique representations for different positions while
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allowing the model to generalize to longer sequences than those seen during training. The final
input to the Transformer is obtained by adding the positional encodings to the corresponding

input embeddings:

Z=E+PE (2.7)

This allows the model parallel computation while still maintaining information about the

token positions and enables the use of self-attention.

Self-Attention Mechanism

The self-attention mechanism is the core of Transformer networks. It allows each element to
pay attention to all other elements, capturing dependencies independent of their distance to

each other.

This is achieved by computing attention scores (how important elements are for each other)

between elements using three components: queries (Q), keys (K), and values (V).

Queries, keys, and values represent different projections of the input sequence, each calcu-
lated by applying learned linear transformations. For each token in a sequence, its own query,
key, and value vectors are calculated. Query vectors determine the relevance of other tokens,
key vectors represent the tokens to be compared, and value vectors contain the actual data of
the tokens.

The self-attention mechanism operates as follows:

Q=ZWy, K=ZWg, V=ZWy (2.8)

where Z represents the sum of the input embeddings and positional encodings, and Wy, Wk,
and Wy are learned weight matrices. The attention scores are computed using the scaled

dot-product of the queries and keys:

Attention(Q, K, V) ft (QKT)V (2.9)

ention(Q, K, V) = softmax 2.9
Ve

Here, dy is the dimensionality of the keys. The scaling factor Vd; helps to mitigate the

impact of large dot-product values, which can make the softmax function produce very small

gradients.



2.2 Deep Learning-Based Methods 13

Multi-Head Attention

Multi-head attention is used to further increase the model’s ability to focus on different parts
of the input sequence. Several self-attention operations are applied in parallel, as shown in
Figure 2.4. Each of these attention heads has its own learned projections, allowing the model

to capture different relationships between elements.

Concat

f

~
Scaled Dot-Product J& h
Attention <

l | l

e e e
[ Linear],][ Linear],][ Linear]_]

Vv K Q

Figure 2.4: [llustration of the multi-head attention mechanism from [Vas+23].
Each head i computes its own attention function:

head; = Attention(QWo,, KWk, VWy,), i=1,...,h (2.10)

where Wo,, Wg,, and Wy, are the weight matrices for the i-th head. The outputs of all

heads are concatenated and transformed by a final weight matrix Wo:

MultiHead(Q, K, V) = Concat(heady, ..., head,)Wo (2.11)

Feed-Forward Neural Network

After self-attention is applied, each token representation is processed through a fully connected
FFN. The FEN consists of two linear transformations with a non-linear activation function

between them:

FFN(x) = max(0,xW; + b;)W; + b, (2.12)
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where W, and W;, are learned weight matrices, and by and b, are bias terms. The activation

function, typically ReLU, introduces non-linearity into the model.

Patch Embeddings for Vision Transformers

A fundamental challenge in applying Transformers to image data stems from the large number
of pixels in images. Unlike text, which in comparison consists of a relatively short sequence of
words, an image at standard resolution contains millions of pixels. Directly treating each pixel
as an input token would make the computational cost of self-attention infeasible.

To address this, Dosovitskiy et al. proposed the Vision Transformer (ViT) [Dos+21]. Figure 2.5
illustrates the ViT architecture and the used encoder. Instead of using a stack of decoder
blocks, ViT uses the encoder part of Transformers to learn a rich latent representation of the
input image, followed by a multi-layer perceptron, which is another name for an FFN, for
classification. The ViT architecture can be adapted for different vision tasks by using different

heads to make predictions using the latent representation.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

\ |
00 0

* Extra learnable

[class] embedding Lmea: PrOJectlon of Flaltened Patche%
SEE - TT T 1T ‘|
LT

Embedded
Patches

Figure 2.5: Vision Transformer architecture (left) [Dos+21] and Transformer encoder used in
ViT (right) [Dos+21; Vas+23].

ViT segments an image I € RF*W*C into N non-overlapping patches of size P X P:
HwW
N = 5 (2.13)

Each patch is then flattened into a vector x; € RP *C by concatenating its pixel values.
These patch vectors are subsequently projected into a D-dimensional embedding space using a

trainable linear transformation:
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z; =Wyx;+b,, i=1...,N (2.14)

The resulting vectors, known as patch embeddings, effectively reduce the sequence length
from the total number of pixels to N patches. This transformation makes self-attention
computationally feasible, as the number of tokens processed by the Transformer is now
significantly lower.

Since Transformers lack an inherent sense of spatial structure, a learnable positional embed-

ding p; is added to each patch embedding z; to provide positional information:

z? =2Z; + p; (2.15)

The positionally-encoded patch embeddings then serve as the input token sequence for the
Transformer encoder. This method ensures that spatial relationships within the image are
preserved, enabling the model to learn spatial hierarchies despite the absence of convolutional

operations effectively.

2.2.3 Masked Autoencoders

CNNs and ViTs follow the supervised learning paradigm, requiring labeled data for train-
ing. However, collecting labeled datasets is time-consuming and expensive. As the demand
for annotated data increases, research in self-supervised learning has gained significant at-
tention. Masked Autoencoders (MAEs) [He+22] extend the Transformer paradigm to self-
supervised image modeling, drawing inspiration from masked language modeling in NLP, such
as BERT [Dev+19].

Basic Concept and Motivation

Like ViTs, MAEs divide an image into a series of non-overlapping patches that serve as visual
tokens. Unlike standard ViTs, where all patches are processed equally, MAEs employ random
masking during training, discarding a significant portion of the patches (commonly 75%) while
retaining only a subset (25%) for processing. The model is then tasked with reconstructing the
missing patches from the remaining visible ones. This process is visualized in Figure 2.6.
This self-supervised pretraining strategy forces the model to learn a compact latent represen-
tation of the visible content, capturing local and global semantics necessary to infer the missing
regions. By relying on partial information, MAEs develop strong feature representations, which
can later be fine-tuned for downstream vision tasks such as classification, object detection, and

pose estimation.
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Figure 2.6: Approach of the Masked Autoencoder (MAE) proposed by [He+22].

A major advantage of MAEs is computational efficiency during pretraining. Since the encoder
processes only a fraction of the total patches, the computational overhead is significantly lower
than fully supervised ViTs. This reduction in complexity makes MAEs highly scalable for

large-scale image modeling while maintaining high representational capacity.

MAE Architecture

The MAE architecture consists of two main components: an encoder and a decoder. Both
components follow the ViT framework, but their roles differ. The encoder is responsible for
learning high-level representations from the visible patches while the decoder reconstructs
the missing image content.

The encoder processes only the unmasked patches, leading to lower computational require-
ments than models that process all image patches. Let Z € RV*P be the complete set of patch
tokens extracted from an image, where N represents the number of patches, and D is the
embedding dimension. After applying random masking, only a subset of patches, denoted as

Zisible 1s retained and fed into the encoder:

H= ft‘encoder(zvisible) (2.16)

Each retained patch token consists of a patch embedding along with a positional encoding,
which preserves spatial relationships between patches. The masked patches are discarded

during encoding and do not contribute to the feature extraction. After obtaining the latent rep-
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resentation H from the encoder, a small, lightweight Transformer-based decoder reconstructs
the missing patches. The decoder takes both the latent representation and a set of mask tokens
representing the missing patches. These mask tokens are learnable parameters that provide
a placeholder for the missing information, allowing the decoder to infer the original image

content.

The reconstruction objective is formulated as a mean squared error (MSE) loss, applied only

to the masked patches:

1 N
Lreconstruction = N— Z ”Xp,i - Xp,illz (2'17)

masked iemasked

where x,; represents the original pixel values of the masked patches, and %X, ; denotes the
predicted reconstructions. By optimizing this loss function, the model learns to predict missing

information based on its understanding of the visible patches.

Advantages and Applications

MAEs provide a computationally efficient approach to self-supervised learning by processing
only a fraction of the input patches in the encoder. This significantly reduces training time
and memory consumption compared to standard self-supervised learning techniques, which
process the entire image. Furthermore, the need to reconstruct missing content forces the model
to learn meaningful feature representations, which improves generalization in downstream
tasks.

Self-supervised pretraining with MAEs has shown strong performance when fine-tuned on
various vision tasks, including body part segmentation, depth estimation, normal estimation
and human pose estimation [Khi+24]. The ability to learn from unlabeled data reduces the
dependency on large labeled datasets, making MAEs an attractive approach for real-world

applications where data annotation is costly.

2.2.4 Pose Estimation Heads

All three presented architectures, CNN, ViT and MAE, can be used as backbone networks for
feature extraction from images. Two main approaches are commonly used to predict keypoint
locations from the features extracted by these backbone networks: coordinate regression and

heatmap generation.
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Figure 2.7: Example heatmap from the Stacked Hourglass Network, as presented in [NYD16].

Coordinate Regression

In this approach, the network directly regresses the coordinates of each joint. The final feature
maps from the backbone are flattened and processed by fully connected layers to obtain

keypoint predictions:

}Af = WeFiattened + bte (2.18)

where ¥ represents the predicted keypoint locations, Fyaytened is the flattened feature repre-
sentation, and W, by, are the learnable weights and biases of the fully connected layer.

While coordinate regression offers a straightforward approach, it often struggles to capture
spatial dependencies effectively, particularly in complex poses or when occlusions are present.
This limitation stems from the fact that direct coordinate regression lacks the spatial structure

that is inherently preserved by convolutional layers [Zha+19].

Heatmap Generation

A more widely adopted approach, especially in state-of-the-art methods, involves predicting
a heatmap for each keypoint rather than regressing coordinates directly [XWW18; Sun+19;
NYD16]. Instead of predicting coordinates directly, the model outputs a probability distribution
over possible keypoint locations in the form of a heatmap, where each assigned value to a pixel
corresponds to the probability that the keypoint is at that pixel. Such heatmaps are illustrated
in Figure 2.7 for five keypoints. This approach enables more robust and spatially aware
keypoint localization. This enhancement in performance is attributed to the incorporation of
spatial information inherent in the image itself, preserving the relative positioning and the
structure of body parts. Generating heatmaps in the same spatial domain as the input image
inherently encodes contextual and geometric relationships between keypoints, increasing the
approach’s effectiveness in handling occlusions, perspective distortions, and varying poses
[NYD16]. Consequently, networks adopting heatmap-based keypoint detection can learn spatial

dependencies more effectively than direct coordinate regression methods.
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The ground-truth heatmap for a keypoint k is typically modeled as a Gaussian distribution

centered at the actual joint location:

(x = x0)* + (y — yr)* (
o7 2.19)

H(x,y) = exp -

where (xk, yx) is the ground-truth keypoint position, (x, y) the estimated keypoint position,
and o controls the spread of the Gaussian. During training, the network learns to generate
similar heatmaps, and during inference, the joint location is determined by identifying the
peak response in the predicted heatmap.

Heatmap-based approaches have been shown to outperform direct regression methods
because they use spatial context and local structures, making them more robust in complex
scenarios [XWW18; Sun+19; NYD16]. In contrast to direct regression, which imposes precise
coordinate predictions without accounting for spatial uncertainty, heatmaps distribute the
probability of a keypoint over a region. This allows the model to handle occlusions and
ambiguous poses more effectively.

However, heatmap estimation has its limitations. One significant issue arises from quanti-
zation errors, as keypoint locations are restricted to discrete pixel coordinates in the output
heatmap. This constraint prevents sub-pixel precision without additional post-processing tech-
niques. Various methods, such as Differentiable Soft-Argmax [Sun+19] and DARK (Distribution-
Aware Refinement of Keypoints) [Zha+19], have been proposed to mitigate this limitation by

refining keypoint predictions beyond pixel-level accuracy.

2.3 Segmentation

Segmentation techniques in computer vision are generally categorized into three primary
types: semantic segmentation, instance segmentation, and panoptic segmentation.

Semantic segmentation assigns a class label, such as person, background, or object, to each
pixel in an image. However, it does not differentiate between multiple instances of the same
class, treating all objects of a given class as a single entity [LSDi5].

Instance segmentation builds on the idea of semantic segmentation by classifying pixels
and distinguishing between individual instances of the same class. For instance, in an image
containing multiple people, instance segmentation labels each detected person separately (e.g.,
person 1, person 2), enabling object separation [He+17].

Panoptic segmentation integrates both semantic and instance segmentation by assigning
every pixel in an image a class while differentiating between stuff (amorphous regions such

as sky or grass, which aligns with semantic segmentation principles) and things (countable
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objects such as people and cars, which require instance-level differentiation) [Kir+19].

Body Part Segmentation

Body part segmentation is a specialized variant of semantic segmentation, where each pixel
is assigned to a specific anatomical region (e.g., head, torso, arms, legs). Unlike instance
segmentation, which identifies separate objects of the same category, body part segmentation

provides a fine-grained delineation of the human body, as shown in Figure 2.8.
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Figure 2.8: Body part segmentation from Sapiens, as presented in [Khi+24].

Despite its advantages, body part segmentation poses significant challenges due to pose
variations, occlusions, and complex backgrounds. However, advancements in deep learning
architectures have greatly improved segmentation accuracy and robustness, enabling the

generation of high-quality segmentation maps suitable for downstream tasks [Khi+24].

2.4 Data Augmentation in Human Pose Estimation

Data augmentation is a crucial strategy for enhancing the robustness and generalization of HPE
models. By artificially diversifying training datasets, data augmentation significantly reduces
the risk of overfitting and enhances the models’ ability to generalize to unseen scenarios
[Jia+24; SK19; TN18]. Effective augmentation approaches for human pose estimation can be
categorized broadly into geometric transformations, appearance-based adjustments, occlusion

simulations, and advanced automated augmentation strategies. This section will summarize
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augmentation techniques for human pose estimation in accordance with the surveys outlined
by [Jia+24; SK19].

2.4.1 Geometric Augmentations

Geometric transformations such as scaling, rotation, translation, cropping, and horizontal
flipping are widely employed to simulate viewpoint variations and spatial changes [SSPo3;
KSHi2]. These methods increase invariance to different camera setups and subject orientations,
allowing pose estimation models to maintain accuracy under diverse conditions. Additionally,
specialized approaches like half-body augmentation—where only upper or lower body parts
are selectively zoomed and cropped-have shown empirical improvements by enhancing model

sensitivity to fine-grained keypoint details [Jia+24].

2.4.2 Appearance-based Augmentations

Appearance-based augmentations change photometric properties, including brightness, con-
trast, saturation, and color jitter, to improve robustness under varied lighting and environmental
conditions [SK19]. Advanced techniques such as neural style transfer further diversify training
data by applying styles from different visual domains, effectively preparing models to handle

unseen texture and color variations [GEB16].

2.4.3 Occlusion and Information Dropping

Simulating occlusions via methods such as Cutout [DT17], CutMix [Yun+19], and random eras-
ing introduces robustness to partial visibility, which is commonly encountered in real-world
images. By deliberately obscuring body parts or regions within images, these augmenta-
tions compel models to infer occluded joints from visible context, thus improving contextual

reasoning and accuracy in occluded scenarios [Jia+24].

2.4.4 Synthetic Data Generation

Synthetic data augmentation generates new examples using graphical rendering or recombi-
nation techniques. Using computer-generated people or compositing real people onto new
backgrounds significantly increases data diversity and fills gaps in real-world data distribu-
tions [DMSi18]. The realism and variety offered by synthetic augmentations can increase

generalization, particularly for rare or difficult-to-capture poses and scenarios [Jia+24].
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2.4.5 Automated and Advanced Augmentation

Automated augmentation techniques, including AutoAugment [Cub+19] and RandAugment
[Cub+20] dynamically identify optimal augmentation strategies through machine learning
methods. Recent adversarial augmentation frameworks and differentiable augmenters such
as PoseAug [GZF21] further advances this field by adaptively generating challenging training

samples tailored specifically to pose estimation tasks [Jia+24].
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3 State-of-the-Art

Human pose estimation has undergone significant progress in the past decade, driven mainly by
advancements in deep neural networks and improved computational capabilities. This chapter
discusses the state-of-the-art (SOTA) methods in 2D HPE, focusing on CNN-based methods,
transformer-based methods, and emerging foundation models. Furthermore, it extensively
reviews approaches targeting the challenges posed by occluded and truncated human body
parts and examines keypoint dependencies critical for robust estimation in partially observable

scenarios.

3.1 CNN-Based Human Pose Estimation Methods

CNN-based methods have been the cornerstone of human pose estimation for the past decade
due to their powerful feature extraction capabilities and computational efficiency. One of the
foundational works is the Stacked Hourglass Networks proposed by Newell et al. [NYD16]. This
architecture uses repeated downsampling and upsampling operations (hourglass modules) to
capture multi-scale contextual information effectively. The model iteratively refines predictions
by stacking several hourglass modules, integrating global structural information and fine-
grained local details. The Stacked Hourglass Network demonstrated superior accuracy on
benchmark datasets such as MPII [And+14] and has become a baseline for many subsequent
studies.

Building on this idea, Sun et al. [Sun+19] introduced the High-Resolution Network (HRNet),
designed explicitly to maintain high-resolution feature maps throughout the entire network
structure. HRNet avoids aggressive downsampling, thereby preserving spatial precision and
enabling the accurate localization of keypoints. This strategy substantially improved per-
formance on standard benchmarks, such as the COCO Keypoint dataset [Lin+15], without
complicated post-processing or multi-stage refinement. Similarly, methods like the Cascaded
Pyramid Network (CPN) [Che+18] and SimpleBaseline [XWW18] achieved significant gains by
effectively merging multi-scale features. In particular, CPN utilizes a two-stage framework,
where an initial global prediction guides a subsequent refinement network that specifically

addresses difficult-to-predict keypoints.
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3.2 Transformer-Based Approaches and Foundation Models

Transformer architectures have recently demonstrated remarkable potential in human pose
estimation by effectively capturing long-range dependencies between keypoints—an advantage
over traditional CNNs with limited receptive fields. One of the earliest successful transformer-
based methods, TransPose [Yan+21], introduced self-attention mechanisms to model the re-
lationships between joints explicitly. Its attention maps highlight how predictions rely on
adjacent and symmetric joints, which is particularly beneficial when handling occlusions.
Building on this concept, TokenPose [Li+21] went further by representing each keypoint as
a learnable token and then modeling interactions between these tokens. This token-based
approach adapts attention to context-specific visual cues, thus enhancing robustness under

partial visibility.

Subsequent approaches have adapted the DETR (DEtection TRansformer) [Car+20] frame-
work, initially designed for object detection, to keypoint prediction. By exploiting DETR’s
end-to-end formulation, these methods jointly perform bounding-box detection and pose
estimation, streamlining the overall pipeline. Meanwhile, HRFormer [Yua+21] merges HRNet’s
high-resolution approach with transformer blocks to retain high-resolution spatial information
while incorporating global self-attention. Similarly, hierarchical vision transformers such as
Swin Transformer [Liu+21] have been adapted for pose tasks, where window-based attention

efficiently captures multi-scale structures crucial for precise keypoint localization.

Another notable development is ViTPose [Xu+22], which employs a ViT backbone pre-
trained on large-scale image datasets. While ViTPose is not strictly a foundation model, its
extensive pretraining provides strong generalization across diverse scenarios. By learning
universal visual representations of the human anatomy, ViTPose achieves state-of-the-art
accuracy on multiple standard benchmarks. More recently, the field has begun to explore
genuine foundation models. Foundation models are large-scale, self-supervised systems that
learn broadly applicable representations for various downstream tasks. Sapiens [Khi+24], for
instance, was trained on millions of images using self-supervised learning strategies explicitly
tailored to human-centric tasks. This extensive pretraining has been shown to result in
impressive robustness against partial visibility and occlusions, enabling Sapiens to outperform
previous models on challenging benchmarks like Humans-5K. These findings demonstrate the
merits of foundation models, which apply extensive data and computing resources to learn

highly generalizable representations of human pose.
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3.3 Occlusion and Truncation in Human Pose Estimation

Occlusion and truncation remain two of the most challenging problems in human pose es-
timation. They create partially visible or missing keypoints, which complicate inference.
Researchers have addressed these obstacles through a variety of techniques, including both
data augmentation and specialized network architectures. A prominent example is Body-
Cropping Augmentation (BCA) [PLP20] simulates real-world scenarios by systematically
cropping sections of human figures in training images. This strategy compels models to focus
on contextual cues to infer missing information, ultimately reducing false-negative detections
and improving generalizability.

Position Puzzle Network (PPNet) [PP21] takes a more direct approach to truncation issues,
which often arise from inaccurate bounding box estimation, where the bounding box does
not fully capture the person. PPNet predicts the likely full-body position and then expands
bounding boxes on the fly to accommodate joints that initially fall outside the detected region,
thereby boosting keypoint localization in occluded or truncated settings. In parallel, MeTRo
(Metric-scale Truncation-Robust heatmaps) [Sar+21] shifts the representation space from pixels
to a learned metric scale, allowing for robust joint predictions even when body parts extend
beyond the image boundary. Although MeTRo was initially designed for 3D pose estimation,

similar principles could be adapted to 2D contexts, mitigating occlusion and truncation effects.

3.4 Keypoint Dependencies and Robustness under Partial

Observations

One critical aspect determining model robustness to occlusions and truncations is the in-
terdependency between keypoints. Research has extensively documented how deep neural
networks use relational information between keypoints, especially under partial observations.
TransPose [Yan+21] and TokenPose [Li+21] demonstrated through attention analysis that
models rely heavily on adjacent and symmetrical keypoints for inferring obscured joints.
These transformer-based networks progressively refine their attention, initially using broad
contextual information and gradually focusing on local anatomical details or symmetrically
related joints.

Tang and Wu [TW19] analyzed grouping strategies of keypoints, comparing handcrafted
versus statistical (data-driven) approaches. Their study revealed that data-driven grouping
strategies consistently outperformed manual ones due to better alignment with learned anatom-
ical relationships and joint dependencies. These findings emphasize the importance of accu-

rately modeling keypoint groups to improve prediction accuracy under challenging visibility



26 3 State-of-the-Art

conditions.

Moreover, explicit modeling skeletal constraints through graphical structures or losses can
further enhance occlusion robustness. For instance, models employing limb-graph consistency
losses ensure anatomically plausible predictions even under severe truncations or occlusions

by implicitly encoding anatomical priors [Han+24].

This chapter provided a detailed examination of current methodologies in human pose esti-
mation, focusing on the challenges arising from occluded and truncated poses. CNN-based,
transformer-based, and foundation models were analyzed, highlighting their respective con-
tributions to state-of-the-art accuracy. Additionally, strategies for explicitly handling partial
visibility and keypoint dependencies were explored, emphasizing their role in improving ro-
bustness. Despite significant advancements, challenges remain, particularly in pose estimation

under truncation, which has received comparatively little research attention.
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4 Methodology

Keypoint detection aims to localize specific anatomical landmarks on human figures within an
image. Despite significant advancements through deep learning, challenges such as occlusions,
truncated body regions, and varied viewpoints still degrade the reliability of standard pose
estimation pipelines [Che+18; Li+21; Ma+22]. This chapter presents augmentation strategies
selected and designed explicitly for truncated poses and segmentation-based conditioning

approaches to address these limitations.

4.1 Dataset Selection and Preprocessing

The proposed approach uses the Microsoft Common Objects in Context (MS COCO) [Lin+15]
dataset. MS COCO is a widely recognized and used benchmark dataset for computer vision
tasks, including object detection, segmentation, and human pose estimation. The MS COCO
dataset contains approximately 328,000 images, with over 2.5 million annotated object instances
spanning 91 object categories. The dataset is designed to represent complex real-world scenarios,
capturing a wide range of everyday objects in varied environmental conditions. MS COCO
employs a multi-step annotation process for accurate and high-quality annotations. This
includes instance segmentation, which delineates object boundaries precisely, allowing for
more reliable object localization and classification. The annotation process also incorporates
keypoint-based human pose labeling, making it particularly suitable for human-centric vision
tasks.

4.1.1 Training Dataset

For this study, the 2017 training and validation subsets of MS COCO were selected. These
datasets comprise 118,000 images for training and 5,000 for validation. However images
without at least one human figure were excluded, since the focus was on human-related tasks.
This filtering process resulted in a refined dataset of 25,466 training images and 1,033 validation
images.

MS COCO provides both bounding box and keypoint annotations for human instances. The
keypoint annotations follow the COCO topology, which consists of 17 keypoints defining the
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Figure 4.1: Keypoint topology of the MS COCO dataset.

human pose, as illustrated in Figure 4.1. These keypoints represent anatomical landmarks such

as facial features, shoulders, elbows, wrists, hips, knees, and ankles.

4.1.2 Test Dataset

A custom test dataset of approximately 500 images was previously collected using a 16-camera
multi-camera system. This setup employed 16 Intel RealSense D415" cameras, strategically
arranged and calibrated to function as a 3D person scanner, as shown in Figure 4.2.

In this configuration, the top and bottom cameras were mounted in portrait orientation, while
the remaining cameras were positioned in landscape. This arrangement captured natural, multi-
perspective views of each subject, ensuring diverse representations. By recording individuals
from various angles simultaneously, the dataset contains a wide range of partial-body views,
enhancing its applicability for human pose estimation tasks.

For each image, bounding box and keypoint annotations were manually annotated during
this study. Each image was labeled with a bounding box and keypoint locations following the
COCO keypoint topology, allowing for accurate evaluation of pose estimation models.

Conventional datasets primarily contain full-body poses; however, this dataset naturally
includes truncated poses due to the multi-camera setup. Depending on the camera angle, some

views capture only upper-body, lower-body, or side-body perspectives, mimicking real-world

1 https://www.intelrealsense.com/depth-camera-d415/
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Figure 4.2: Multi-camera setup consisting of 16 RealSense D415 cameras. The top and bottom
cameras are mounted vertically, while the remaining cameras are positioned hori-
zontally.

scenarios where individuals may be partially visible at the image boundaries or under non-
standard framing conditions, as depicted in Figure 4.3. This dataset offers an ideal testbed for

assessing the robustness of models trained to infer poses from incomplete visual information.

4.1.3 Body Part Segmentation

To introduce structural context for each image, body part segmentation maps are generated
using the Sapiens-1B model [Khi+24]. These segmentation maps provide a detailed decom-
position of the human silhouette into distinct anatomical regions, such as upper and lower
arms, legs, torso, and head. Figure 4.4 depicts two images with corresponding segmentation
masks. By explicitly encoding spatial priors, these maps supplement standard keypoint-based
annotations, aiding pose estimation in cases where portions of the body are missing due to

truncation.



30 4 Methodology

Figure 4.3: Four images captured from different cameras and perspectives using the multi-
camera 3D scanning setup.

Sapiens-1B Segmentation Model

The Sapiens-1B model [Khi+24] is a transformer-based segmentation framework designed for
pixel-accurate body part segmentation. It employs an MAE pre-training approach to learn

robust feature representations, improving generalization across diverse environments.

Encoder The encoder follows a ViT backbone and processes input images by dividing them
into non-overlapping patches. These are projected into an embedding space and passed through
amulti-layer transformer network, capturing long-range dependencies and spatial relationships.

The encoder outputs a structured feature map that serve as input for the segmentation decoder.

Decoder The decoder, known as VitHead, reconstructs high-resolution segmentation masks

from the encoded feature representations. It employs deconvolution layers to upsample feature
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Figure 4.4: Body part segmentation maps (right) generated using the Sapiens-1B model [Khi+24]
and aligned with the corresponding augmented RGB images (left) from the MS
COCO [Lin+15] dataset.

maps, restoring spatial resolution while preserving structural details. Convolution layers
refine these features to enhance the accuracy of body part segmentation by capturing finer
anatomical details. As a last step, a 1 X 1 convolution layer maps the refined features to pixel-
wise segmentation labels across 28 classes, which include 27 body parts and a background

class.

Role in Keypoint Detection

In HPE from partial observations, segmentation maps serve as auxiliary input by providing
region-specific cues that compensate for missing body parts. When keypoints are missing
due to truncation at the image boundary, the segmentation mask retains information about
the spatial extent of visible body regions. This additional structural context helps the model

constrain its predictions, improving localization accuracy by enhancing anatomical consistency.
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4.2 Synthetic Augmentation

A synthetic augmentation technique was developed to address truncated poses more effectively.
This method randomly shifts bounding boxes and clips them to the image boundary, providing
a realistic simulation of truncation scenarios that enhances training for partial pose visibility.

Figure 4.5 illustrates how the bounding box is shifted and clipped.

(a) Shifted box remains inside (no effective clip- (b) Shifted box goes partially out of the image
ping). and is clipped.
Original Bbox ~ ----- New Truncated Image New Bbox

Figure 4.5: The shifted bounding box (blue, dashed) is clipped to stay within the image boundary.
The intersection (orange) is the overlap between the original (green) and the clipped
shifted region.

The augmentation is applied with a probability of p = 0.3, ensuring controlled exposure to
truncated samples. When triggered, the bounding box of a person is extracted in the format
(x, y, w, h), where (x, y) are the top-left coordinates, and w, h denote width and height.

Truncation is simulated by shifting the bounding box via offsets A, and A,:

Ay ~U(=0.5w,0.5w), Ay, ~ U(-0.5h,0.5h) (4.1)

where U (a, b) represents a uniform distribution. The shifted bounding box coordinates are:

X=x+A,, yY=y+A4y (4.2)
while the original width and height remain unchanged:

w=w, h=h (43)

To prevent exceeding the image boundaries, coordinates are clipped:
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X = max (0, min(x, W — w)) (4-4)

7 = max(0, min(7, H — fl)) (4.5)

Bounding box dimensions are also clipped if necessary:

w = min(w, W — X) (4.6)

h= min(ﬁ,H ) (4.7)

A final validity check ensures that the truncated region remains large enough (at least 100
pixels in width and height). Any keypoints falling outside the new bounding box are set to
zero. If no valid keypoints remain, the augmentation is discarded and the original image is

used; otherwise, the augmented image is retained for training.

4.3 Model Architecture

This work employs two primary backbone architectures: HRNet [Sun+19], a CNN-based model,
and Sapiens [Khi+24], a Transformer-based approach. Body part segmentation is integrated

into these backbones via two distinct methods: spatial attention and ControlNet [ZRA23].

4.3.1 HRNet

HRNet (High-Resolution Network) [Sun+19] is a convolutional architecture designed to main-
tain high-resolution representations throughout its layers, making it well-suited for tasks that
require detailed spatial precision, such as human keypoint localization. In contrast to conven-
tional CNNss that aggressively downsample the spatial dimension, HRNet preserves multiple
parallel streams at different resolutions and employs fusion layers to exchange information
across these streams. This strategy retains fine-grained features while also incorporating a
broader semantic context. The overall HRNet structure is visualized in Figure 4.6, adapted
from Sun et al. [Sun+19].

In this study, the HRNet-W48 variant is used. Figure 4.7 visualizes a simplified version of
the architecture to demonstrate the different stages and fusion layers. Its design comprises
four sequential stages. The first stage includes a single high-resolution branch of bottleneck

blocks that produces 64-channel feature maps. The second stage introduces a second parallel
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Figure 4.6: HRNet architecture illustrating multi-resolution subnetworks, adapted
from [Sun+19].

branch, resulting in two concurrent streams with 48 and 96 feature channels. The third stage
expands to three parallel streams carrying 48, 96, and 192 channels. The fourth stage adds a
fourth branch, culminating in streams of 48, 96, 192, and 384 channels. Figure 4.7 depicts a

simplified schematic of these stages.

Input [ Stage 1 ‘ [ Conv2 ‘ Fusion2 [ Convs ‘
l (64ch) l (48¢ch)

Figure 4.7: Simplified HRNet architecture visualization showing the multi-resolution parallel
subnetworks, feature channel counts and feature fusion.

Each stage incorporates cross-resolution fusion layers that continuously exchange spatially-
detailed features with broader semantic information. After the final stage, HRNet applies a
HeatmapHead to the highest-resolution (48-channel) feature maps, producing 17 heatmaps
for keypoint prediction. Owing to HRNet’s inherently high-resolution design, no additional
upsampling or deconvolution layers are required. Optimization is performed via mean squared
error (MSE) loss on the predicted heatmaps. By consistently retaining high-resolution features,

HRNet facilitates precise human pose localization.
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4.3.2 Sapiens 0.3B

Sapiens [Khi+24] is a Transformer-based model explicitly fine-tuned for human pose estimation.
The Sapiens 0.3B variant, containing approximately 300 million parameters, is employed in this
work. Figure 4.8 illustrates the Sapiens architecture (left) and the transformer encoder (right)

that is used. The core of this architecture is a ViT backbone enhanced by MAE pretraining.

Input Image Transfornier Encoder

Patch Embedding E
E 24 X Encoder Block |

Heatmap Head
Keypoint Heatmaps E?at;gggse ‘

Figure 4.8: Simplified Sapiens Pose Architecture (left) und used Transformer Encoder Archi-
tecture (right) [Vas+23; Dos+21].

At the input stage, images are divided into 16 X 16 non-overlapping patches, which are
than flattened and transformed into 1,024-dimensional token embeddings. In contrast to
conventional ViT designs, Sapiens omits the class token, instead generating dense feature maps
that are directly applicable to keypoint-level predictions. A total of 24 Transformer encoder
layers compose the primary backbone, with layer normalization applied immediately before
the subsequent prediction modules.

Following the Transformer backbone, the model introduces a dedicated HeatmapHead. This
head progressively restores spatial resolution using two transposed convolution operations,
each with a 4 X 4 kernel size, resulting in an overall fourfold upsampling. Intermediate convo-
lutions further refine these upsampled feature maps, culminating in a series of heatmaps, one

per human keypoint.

Both models are initialized with pre-trained weights. HRNet utilizes the publicly available “td-
hm_hrnet-w48_8xb32-210e_coco-384x288” checkpoint from MMPose [Conz2o], while Sapiens

relies on weights provided by its original authors [Khi+24].
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4.4 Segmentation-Based Methods

Two approaches for incorporating body part segmentation into the HPE pipeline are explored:
spatial attention, a backbone-independent method that enhances relevant spatial features,
and ControlNet, which integrates segmentation information directly within the backbone

architecture.

4.4.1 Method 1: Spatial Attention

The first method applies spatial attention to enhance regions of interest while suppressing
irrelevant areas selectively. This approach aims to refine keypoint detection, particularly in
cases of truncated or occluded poses, by directing the model’s focus toward visible body parts

and away from background clutter.

Segmentation-Driven Attention Computation

Backbone Segmentation Segmentation Maps
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(a) Mustration of the spatial attention mechanism with
backbone feature maps and segmentation maps. (b) Spatial attention architecture.

Figure 4.9: Comparison between the spatial attention mechanism (left) and its architectural
details (right). The spatial attention module and its components are highlighted in
blue.

Segmentation maps obtained from Sapiens Segmentation provide body part information
indicating which regions are likely to contain visible limbs or torsos. As illustrated in Figure 4.9,
these maps are passed through a lightweight set of convolutions to produce an attention mask A.

A 1x 1 convolution with batch normalization matches the channel dimensions of the backbone
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features and a subsequent depthwise separable convolution refine local spatial responses while
reducing parameter overhead. A sigmoid activation assigns attention values between o and 1,
leading to partial emphasis on important anatomical areas.

The refined mask highlights visible body parts at each spatial location and suppresses
occluded or background regions. The resulting mask modulates the backbone feature maps F
through elementwise multiplication, scaling the contribution of each spatial position. A residual
connection adds F back to the modulated features, helping preserve the original representation
while selectively focusing on the most informative regions. Figure 4.9a illustrates the applied

architecture. Formally,

F=F+F®o(A) (4.8)

where o(-) denotes the sigmoid function, F the backbone features, and F’ the attention-
weighted output. This formulation mitigates over-dependence on the segmentation signal and

stabilizes learning by retaining direct access to unmodified features.

Integration into HRNet and Sapiens. The proposed mechanism is integrated after feature
extraction, enabling seamless incorporation into various top-down pose estimation pipelines.
The HRNet and Sapiens Pose models leverage segmentation-driven attention to enhance key-
point prediction. In HRNet, the attention mask is derived from the Sapiens Segmentation
output and integrated into the high-resolution feature stream obtained from the HRNet back-
bone. This refined feature stream is then processed by the HeatmapHead, improving keypoint
localization by emphasizing relevant anatomical structures while suppressing background
noise. Similarly, the Sapiens Pose model utilizes segmentation maps from the independent
Sapiens Segmentation network to guide spatial attention. This mechanism directs the network
toward discriminative regions, enhancing keypoint accuracy. It is important to note that
the segmentation model operates independently of the pose estimation pipeline, ensuring

modularity while effectively leveraging segmentation-based spatial priors.

Implementation Considerations Integrating segmentation attention requires minimal
architectural modifications and introduces only a small number of additional parameters.
However, generating segmentation maps as a preprocessing step adds computational overhead,
increasing inference time compared to pipelines that rely solely on RGB input. Despite this,
since feature modulation occurs at the final stage of feature extraction, this method remains
compatible with various pose estimation pipelines while improving robustness to occlusions

and challenging poses.
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Benefits and Limitations

Segmentation-driven attention adaptively focuses the network on relevant parts of the human
body, which proves valuable when certain limbs are obstructed or truncated. This localized
emphasis serves to mitigate the loss of information due to truncation by introducing information
about the presence or absence of body part parts. However, it should be noted that the
effectiveness of the attention mask is highly dependent on the accuracy of the segmentation
process [Yan+21]. Incorrect or imprecise segmentation maps can propagate misleading cues,
degrading the overall pose estimation. Furthermore, exclusively local attention may fail to

capture global dependencies, such as severely out-of-frame limbs.

4.4.2 Method 2: ControlNet

ControlNet was introduced in [ZRA23] to enable generative models to incorporate auxiliary
conditioning signals, such as segmentation masks, for more structured outputs. In this study, the
ControlNet framework is extended beyond its conventional applications and adapted to human
pose estimation, specifically within the feature extraction process. This approach introduces
segmentation-based conditioning to enhance the spatial understanding of articulated body
structures, improving keypoint localization even in challenging scenarios such as occlusions
or truncations.

Traditional pose estimation models rely primarily on raw image features, which often strug-
gle to resolve occluded or overlapping limb position ambiguities. By integrating ControlNet,
segmentation cues act as additional control signals that explicitly highlight anatomical bound-
aries. This facilitates the disambiguation of complex poses, providing a structured mechanism
to inject spatial priors into the feature extraction pipeline. The goal is to enhance both the se-
mantic richness and geometric consistency of the learned pose representations while preserving

the generalization capacity of the backbone network.

ControlNet Architecture

ControlNet follows a parallel-branch design, introducing trainable control pathway alongside
a frozen pre-trained backbone. As shown in Figure 4.10, a new ControlNet block is added
parallel to each existing network block. This new branch processes control signals, such as
segmentation-based features, while the original network block remains unaltered. The control
pathway consists of zero-convolution layers, which allow the segmentation features to be
projected into a latent space compatible with the backbone’s feature maps. The processed

features are then merged back into the main network using residual addition. This architecture
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enables the model to incorporate external spatial cues without altering the core structure of

the pre-trained backbone.
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Figure 4.10: lllustration of ControlNet from [ZRA23]. A parallel, trainable copy of the original
network block processes segmentation-based control signals, while the original
block (frozen) remains untouched.

Integration into HRNet and Sapiens

To integrate ControlNet into existing pose estimation architectures, body part segmentation
maps from Sapiens Segmentation are introduced at multiple levels within the feature extraction
backbone. In HRNet, where a block corresponds to an entire stage, ControlNet modules are
added in Stages 2—4. In the Sapiens Pose model, each encoder block is augmented with a parallel
ControlNet branch. The additional ControlNet branch follows the standard design, where
segmentation features are processed separately and fused back into the backbone through

residual connections.

This integration allows segmentation-driven conditioning to refine the raw feature represen-
tations at multiple feature extraction stages. By reinforcing anatomical boundaries and spatial
cues, the approach enhances the network’s ability to localize keypoints accurately, particularly

in cases of occlusion, truncation, or complex pose variations.

Only the newly added ControlNet branches are updated during training, while the core
feature extraction backbone remains frozen. This selective updating strategy, inspired by prior
work [Zha+24], helps retain the pose-estimation capabilities of the original network while
preventing catastrophic forgetting. At the same time, it enables the effective incorporation of

segmentation cues to refine keypoint localization.
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Benefits and Limitations

The integration of ControlNet into HPE provides several advantages. By incorporating
segmentation-based conditioning, the model gains a more explicit representation of artic-
ulated body structures, particularly in cases of occlusion, truncation, or highly overlapping
limbs. Furthermore, ControlNet’s modular design allows for seamless integration with existing
architectures while requiring minimal modifications to the backbone.

However, this approach introduces additional computational overhead and memory usage
due to the parallel processing branches. To mitigate this, Sapiens 0.3B is selected as a lightweight
segmentation network. Another limitation is the reliance on external segmentation maps, which
may propagate errors into the pose estimation pipeline if the segmentation output is inaccurate.
Additionally, while ControlNet enhances local feature refinement, it does not inherently
capture long-range dependencies between body parts, which integration into transformer-based

backbones might solve. Addressing such limitations may require supplementary mechanisms.

4.5 Training Strategy

The training strategy is designed to enhance model robustness and generalization by incorporat-
ing targeted data augmentation, carefully selected loss functions, and optimization techniques

specifically tailored to each network architecture.

4.5.1 Data Augmentation

To improve resilience against real-world challenges such as occlusions, variations in viewpoint,
and imaging noise, a structured augmentation pipeline is employed on top of the training
dataset prepocessing. This pipeline consists of three primary types of transformations: bound-
ing box modifications, half-body occlusion simulations, and image-level manipulations. All

augmentations are implemented using the MMPose framework [Conz20].

Bounding Box Transformations. Bounding box augmentations are applied to improve
robustness in the detection of inaccuracies and variations in subject positioning. The following

transformations are performed:

« Shifting: With a probability of 30%, the bounding box is randomly translated within
+16% of its original scale along both the x- and y-axes. This helps simulate minor

misalignments and off-center detections.
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« Scaling: Each bounding box is resized by a random factor uniformly sampled between
50% and 150% of its original size to account for variations in subject distance and frame

coverage.

« Rotation: To introduce pose variations caused by different camera angles, bounding

boxes are rotated by a random angle up to +80° with a 60% probability.

Half-Body Transformations. To mimic severe occlusion and truncation scenarios, half-
body transformations are applied to a subset of training samples. Specifically, in 30% of the
cases where at least eight keypoints are detected and at least two belong to a specific body
region (upper or lower body), the bounding box is recalculated to enclose only that region. A
padding scale of 1.5 is added around the cropped area to maintain context. This transformation

forces the model to infer complete poses from partial visual information.

Image-Based Transformations. In addition to spatial modifications, image-level perturba-

tions are introduced to simulate diverse real-world imaging conditions. These include:

« Horizontal Flipping: Applied randomly to enhance pose invariance to lateral reflec-

tions.

« Blurring: Gaussian and median blur are each applied with a 5% probability to simulate

out-of-focus or motion-blurred images.

+ Coarse Dropout: To enhance robustness against missing visual information, 40% of
the images undergo coarse dropout, where rectangular regions are randomly masked.

This compels the model to rely on global context rather than individual keypoints.

Allimage transformations are implemented using MMPose framework [Conz2o] and extended
to segmentation masks, ensuring consistency between images and any associated segmentation
masks.

By randomly applying these augmentations throughout training, the model is exposed to
diverse conditions, improving its ability to generalize to challenging real-world scenarios, such

as extreme occlusions, varying scales, and diverse illumination conditions.

4.5.2 Loss Function and Optimization

Pose estimation is framed as a heatmap regression task, where a Gaussian heatmap is predicted
for each joint location. The loss function is defined as the mean squared error (MSE) between

the predicted and ground truth heatmaps:
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N

1
Lheatmap = N Z

i=1

H; - HiH2 (4-9)

where H; represents the predicted heatmap for the i-th joint, H; is the corresponding ground

truth heatmap, and N denotes the total number of keypoints.

Optimization Strategy

Both HRNet and Sapiens are optimized using adaptive gradient-based methods with warm-up
and cosine annealing [LH17] learning rate schedules to ensure stable convergence during
fine-tuning. HRNet employs the Adam optimizer [KB17], while Sapiens utilizes AdamW [LHi9]
with additional weight decay adjustments.

Training begins with a warm-up phase over the first 500 iterations, where the learning rate
is gradually increased from 0.001 to the base value of 1 X 10™%, ensuring stable optimization. A
cosine annealing schedule is applied, progressively reducing the learning rate to a minimum
of 1 X 107%. For HRNet, the decay occurs over 50 epochs, whereas for Sapiens, it extends
over 30 epochs. Unlike traditional multi-step decay, which introduces abrupt learning rate
reductions at predefined epochs, cosine annealing allows for a smooth and progressive decrease,
preventing sudden optimization shifts that may destabilize fine-tuning. This approach enhances
convergence stability by maintaining higher learning rates in the early stages for broader
exploration while enabling precise fine-tuning in later epochs, making it particularly suitable
for high-resolution networks and transformer-based models.

Sapiens fine-tuning follows the model’s original weight decay and layer-wise adaptation
strategy, incorporating a weight decay of 0.05 along with a layer-wise learning rate decay
strategy. A decay rate of 0.85 per layer is applied across 24 transformer layers, ensuring that
lower layers retain higher learning rates while deeper layers are gradually regularized. To
prevent unnecessary regularization, decay multipliers for bias terms, positional embeddings,
and relative position bias tables are set to zero, ensuring stable adaptation of model parameters.

To further stabilize training, gradient clipping is enforced with a maximum norm of 1.0 under
the L, norm, preventing gradient explosion and ensuring controlled weight updates. After
each training epoch, model performance is evaluated, and the checkpoint with the highest
average precision is retained for final evaluation.

This optimization strategy, integrating structured learning rate adjustments, adaptive weight
decay, and stabilization techniques, enhances the model’s robustness and efficiency in real-

world pose estimation scenarios.



4.6 Performance Metrics 43

4.6 Performance Metrics

To evaluate the effectiveness of the proposed methods, three key metrics are employed: Average
Precision (AP), Average Recall (AR), and Percentage of Correct Keypoints (PCK). These metrics
quantify different aspects of keypoint detection performance, including precision, recall, and

localization accuracy.

4.6.1 Object Keypoint Similarity

The Object Keypoint Similarity (OKS) metric [Lin+15; RP17] is analogous to Intersection over
Union (IoU) for evaluating keypoint localization. It quantifies the similarity between predicted
keypoints and ground truth annotations while accounting for object scale and keypoint-specific

localization tolerances. OKS is computed as follows:

@
e K . 8(v; > 0)
OKS = .
3. 5(0; > 0) (410)

where:
« d;isthe Euclidean distance between the predicted and ground truth locations for keypoint
I
« s is the object scale, defined as the square root of the bounding box area.

« k; is a per-keypoint constant that normalizes localization error based on anatomical

variability (e.g., head keypoints have lower tolerance than ankle keypoints).

« v; is the visibility flag for keypoint i, where v; = 0 means the keypoint is unannotated

and ignored in evaluation.
« 5(v; > 0) ensures that only annotated keypoints contribute to the similarity score.

The OKS value ranges from o (no similarity) to 1 (perfect alignment). This formulation
allows for a fair comparison of keypoint localization across different object scales and body

parts.

4.6.2 Average Precision

Average Precision (AP) [Lin+15] is a widely adopted metric for HPE that evaluates the accuracy
of predicted keypoints by computing precision-recall curves at multiple OKS thresholds. The
key AP variants in this study include:
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+ AP@o.5: Measures detection quality under a lenient criterion, requiring at least OKS >

0.50 for a keypoint to be considered correct.

« AP@o.75: Employs a stricter threshold (OKS > 0.75), emphasizing a model’s ability to

localize keypoints with high precision.

+« AP@[o0.5:0.95]: Averages AP across ten OKS thresholds (o0.50, 0.55, 0.60, ..., 0.95),

providing a comprehensive measure of localization performance.

The AP metric is calculated by computing the area under the precision-recall curve for
each OKS threshold. Precision is proportion of correctly predicted keypoints relative to all
predictions, while recall represents the proportion of ground truth keypoints successfully
detected. A prediction is classified as a true positive if its OKS exceeds the specified threshold.

Higher AP values indicate that the model produces more accurate keypoint detections with
fewer false positives. Models with high AP@o0.75 or AP@[0.5:0.95] scores excel in fine-grained

localization, whereas AP@o.5 primarily reflects coarse detection ability.

4.6.3 Average Recall

Average Recall (AR) [Lin+15] evaluates the model’s ability to detect ground truth keypoints
across different OKS thresholds. In this work, AR is reported for the following thresholds:

+ AR@o.5: Measures recall when keypoints are considered correctly detected if OKS >
0.50.

« AR@o.75: Evaluates recall under a stricter threshold (OKS > 0.75), assessing the model’s

ability to recover keypoints with high localization accuracy.

+« AR@[o0.5:0.95]: Averages AR across ten OKS thresholds (0.50, 0.55, 0.60, . . . , 0.95),

offering a balanced measure of detection comprehensiveness.

AR is computed by aggregating recall over the specified OKS thresholds. A keypoint is
considered correctly detected if at least one predicted keypoint meets the OKS threshold.
Unlike AP, AR prioritizes the detection of all keypoints, placing less emphasis on precision.

Higher AR values indicate that the model successfully detects a larger proportion of ground
truth keypoints across different OKS thresholds. When coupled with high AP, an elevated AR

suggests that the model is both precise and comprehensive in keypoint localization.
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4.6.4 Percentage of Correct Keypoints

Percentage of Correct Keypoints (PCK), introduced by Yang et al. [YR13], quantifies keypoint
localization accuracy based on a normalized distance criterion rather than OKS. Unlike AP
and AR, which rely on OKS thresholds, PCK measures whether keypoints are within a certain
proportion of a reference distance (e.g., person bounding box or head bounding box).

A keypoint is considered correct if its Euclidean distance from the ground truth location

falls within a threshold proportional to the selected bounding box size:

\/(xp - x4)% + (yp — yg)?> < a X bbox_size (4.11)

where:
* (xp,yp) is the predicted keypoint location.
* (x4, 1yy) is the ground truth keypoint location.
+ a is a scaling factor (e.g., 0.05 for a 5% tolerance as used in this work).
« bbox_size is the maximum of the bounding box width or height.

PCK is then computed as the percentage of keypoints meeting this criterion over the entire
dataset.

PCK provides a scale-invariant assessment of localization accuracy, which is particularly
useful when the quality of the bounding box varies. Smaller values of « enforce stricter
localization criteria, while larger values allow more flexibility. PCK is particularly interesting

for evaluating keypoints in challenging scenarios, such as occlusions or extreme poses.

4.7 Implementation Details

The development process utilizes the MMPose [Conzo] and PyTorch framework [Pas+17] to
provide a flexible and modular environment for integrating different pose estimation archi-
tectures. These frameworks allow for seamless incorporation of various backbone networks,
including HRNet and Sapiens, along with custom Spatial Attention and ControlNet modules.
The implementation’s modular nature allows for independent activation or deactivation of
segmentation attention and ControlNet functionalities, enabling controlled ablation studies to
assess their contributions to model performance.

All experiments are conducted on an NVIDIA RTX 4090 GPU paired with an AMD Ryzen 9
7950X CPU and 64 GB of RAM. While HRNet operates efficiently with the full augmentation
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pipeline, fine-tuning large-scale transformer-based architectures, such as Sapiens-2B with
approximately two billion parameters, introduces a substantial computational overhead where
the training does not fit onto a single GPU. Consequently, Sapiens 0.3B with approximately 300

million parameters has been selected for its smaller size and more manageable parameter count.

The methodology integrates robust model architectures, segmentation-driven spatial attention,
and ControlNet methods supported by tailored augmentation strategies and comprehensive
training protocols. The subsequent chapter presents comparative results validating these
methods, analyzing their effectiveness in handling human poses estimation in cases of partial

observations.
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5 Results

Building upon the methodology described in the previous chapter, this chapter thoroughly
evaluates human pose estimation on the 3D Scanner Dataset, where body parts frequently fall
outside the camera’s field of view. These truncated views introduce missing information that
can degrade performance for other visible joints, creating a realistic and challenging testbed
for incomplete pose detection.

Four configurations are compared for HRNet [Sun+19] and Sapiens 0.3B [Khi+24]: Baseline
(pretrained, no additional training), Fine-tuned (trained exclusively with a custom augmented
dataset that includes artificially truncated images), Segmentation Attention (Seg. Attn.), and
ControlNet. The primary metrics assessed are Average Precision, Average Recall, and Percent-
age of Correct Keypoints. Since the dataset commonly presents body parts partially cut off at
image boundaries, these evaluations reveal how effectively each method handles incomplete

data while aiming for accurate estimates of the visible keypoints.

5.1 Overall Performance Comparison

Two models, HRNet and Sapiens-0.3B, are examined to systematically evaluate the impact of
these different conditioning strategies and training schemes under truncated conditions. They
are compared in terms of AP, AR, and PCK. Table 5.1 shows how Baseline, Fine-tuned, Seg.
Attn., and ControlNet influence performance for each model, with bolded values indicating

each metric’s best score.

5.1.1 HRNet Performance Analysis

HRNet exhibits strong AP and AR across all examined configurations, indicating robust key-
point detection despite missing image regions. The Baseline model attains AP@o.5 = 0.970
and AR@o.5 = 0.977, showing that even without specialized training, it handles partial views
effectively. Its AP@[0.5:0.95] of 0.911 further underscores consistent precision under varying
threshold constraints.

Fine-tuning with truncation-oriented augmentation leads to a notable AP@o.75 increase

(from 0.937 to 0.948), indicating that exposing the network to augmented images during
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Model ‘ Method ‘ AP ‘ AR ‘ PCK@o.05
‘ ‘ AP@o.5 AP@o.75 AP@[0.5:0.95] ‘ AR@o.5 AR@o.75 AR@[0.5:0.95] ‘
Baseline 0.970 0.937 0.911 0.977 0.949 0.925 0.907
HRNet Fine-tuned 0.979 0.948 0.918 0.980 0.951 0.931 0.907
Seg. Attn. 0.979 0.937 0.911 0.980 0.949 0.925 0.907
ControlNet 0.978 0.936 0.916 0.980 0.949 0.930 0.914
Baseline 0.950 0.905 0.881 0.975 0.949 0.933 0.930
Sapiens-0.3B Fine-tuned 0.959 0.927 0.914 0.965 0.937 0.925 0.924
Seg. Attn. 0.960 0.938 0.915 0.967 0.941 0.926 0.916
ControlNet 0.969 0.948 0.928 0.973 0.955 0.937 0.934

Table 5.1: Comparison of Baseline (pretrained), Fine-tuned, Segmentation-Guided Attention,
and ControlNet for HRNet and Sapiens-0.3B on the 3D Scanner Dataset. Bold values
represent the best result in each column.

training helps it navigate diminished visual cues more effectively. AR remains essentially
unchanged, indicating that the model’s ability to detect keypoints has not increased but has
become more precise where detection is successful.

Segmentation Attention (Seg. Attn.) does not substantially alter HRNet’s performance,
implying that coarse segmentation cues add little when the network is already capable of
localizing keypoints in truncated settings. ControlNet yields a moderate boost in PCK@o.05
(from 0.907 to 0.914), suggesting slight benefits for fine-grained localization via multi-layer

segmentation conditioning, though these gains fall behind those from fine-tuning.

5.1.2 Sapiens-0.3B Performance Analysis

Sapiens-0.3B, although somewhat lower in AP than HRNet, achieves a higher PCK@o.05. Its
Baseline configuration reaches AP@o.5 = 0.950, AR@o0.5 = 0.975, and PCK@o0.05 = 0.930,
reflecting strong localization of visible joints. However, its AP@[0.5:0.95] of 0.881 suggests
that Sapiens-o0.3B is more sensitive to truncated limbs when the evaluation criteria become
stricter.

Fine-tuning raises AP@[0.5:0.95] from 0.881 to 0.914 but slightly reduces AR, implying a
precision-recall trade-off in detecting truncated keypoints. Seg. Attn. moderately increases
precision without eroding recall, pushing AP@[0.5:0.95] to 0.915. The results indicate that
Sapiens-o0.3B makes better use of segmentation cues for missing limb regions than HRNet, likely
due to its transformer-based global attention, but Seg. Attn. does not lead to any significant
gains over fine-tuning.

ControlNet emerges as the most effective method for Sapiens-o0.3B, lifting AP@[0.5:0.95] to
0.928 and AR@0.75 to 0.955 while raising PCK@o0.05 to 0.934. Although segmentation-guided

conditioning does not substantially outperform fine-tuning, these results underscore that
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using ControlNet for segmentation-guided conditioning still provides notable benefits to HPE,

producing higher precision and recall under stricter thresholds.

5.1.3 Key Observations

HRNet remains robust in truncated scenarios, benefiting primarily from targeted fine-tuning,
while Seg. Attn. provides minimal additional improvement. ControlNet offers slight boosts in
PCK but does not significantly enhance overall performance. Sapiens-0.3B, though slightly
weaker in raw AP, achieves higher PCK for visible joints. It gains moderate precision improve-
ments from Seg. Attn. and reaches its best overall performance with ControlNet.

These findings confirm that (1) truncation-specific image augmentation is essential for
improving pose estimation in missing-limb scenarios, (2) model architectures differ in how
effectively they integrate segmentation-based conditioning, and (3) while no substantial perfor-
mance gains were observed, the integration of ControlNet into Sapiens-0.3B still led to stronger

performance, indicating that segmentation guidance can enhance HPE model performance.

5.2 Analysis by Body Region

A region-specific breakdown clarifies whether each method resolves truncation consistently
across different body parts. Tables 5.2, 5.3, and 5.4 detail PCK for facial landmarks, upper-body
keypoints, and lower-body keypoints, respectively.

5.2.1 Facial Keypoints

Table 5.2 shows the PCK for the measured facial landmarks — nose, eyes, and ears.

Model ‘ Method ‘ PCK@o.05

‘ ‘Nose Eyes Ears

Baseline 0.995 0.984 0.990
HRNet Fine-tuned | 0.995 0.988 0.993
Seg. Attn. 0.995 0.984 0.990
ControlNet | 0.995 0.988 0.987

Baseline 0.990 0.996 0.994
Fine-tuned | 0.990 0.987 0.990
Seg. Attn. 0.990 0.992 0.987
ControlNet | 0.990 0.992 0.994

Sapiens-0.3B

Table 5.2: Percentage of Correct Keypoints (PCK) for facial landmarks: nose, eyes, and ears.
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HRNet achieves near-perfect nose estimates (0.995) regardless of approach, and segmentation-
based methods do not appreciably elevate performance. Fine-tuning yields small gains for
eye and ear detection, while ControlNet mildly reduces ear accuracy. Sapiens-0.3B similarly
shows limited variation for facial landmarks, with only minor changes in ear PCK between
configurations. Because the face region in the 3D Scanner Dataset is typically either fully
visible or missing at the top boundary, segmentation conditioning delivers minimal additional
benefit.

5.2.2 Upper-Body Keypoints

Table 5.3 focuses on shoulders, elbows, and wrists.

Model ‘ Method ‘ PCK@o.05
‘ ‘ Shoulders Elbows Wrists
Baseline 0.933 0.918 0.967
HRNet Fine-tuned 0.926 0.909 0.960
Seg. Attn. 0.931 0.920 0.967
ControlNet 0.935 0.909 0.965
Baseline 0.937 0.950 0.974
. Fine-tuned 0.940 0.941 0.966

S -0.3B

apiens-o-3 Seg. Attn. 0.928 0.946 0.979
ControlNet 0.928 0.942 0.981

Table 5.3: Percentage of Correct Keypoints (PCK) for upper-body landmarks: shoulders, elbows,
and wrists.

HRNet remains stable in the upper body, with shoulders around o0.93 PCK and wrists
exceeding 0.96. Gains from segmentation approaches are modest but consistent. Sapiens-0.3B
displays more visible improvements. Wrists, which may be partially cropped or poorly visible
when arms are extended, benefit from ControlNet’s segmentation-based cues, reaching a PCK
of 0.981. The transformer-based architecture appears to leverage multi-layer conditioning

more effectively here.

5.2.3 Lower-Body Keypoints

Table 5.4 reports the PCK for hips, knees, and ankles.

HRNet struggles with hip localization, achieving only a PCK of 0.670 under ControlNet,
whereas knees and ankles consistently score above 0.88. Sapiens-0.3B fares better, reaching
0.766 for hips under ControlNet, yet still exhibits a substantial drop in hip accuracy compared

to knees and ankles. These trends indicate persistent ambiguity in hip localization.
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Model ‘ Method ‘ PCK@o.05
‘ ‘Hips Knees Ankles

Baseline 0.653 0.872 0.894
Fine-tuned | 0.628 0.861 0.883
Seg. Attn. 0.657 0.872 0.894
ControlNet | 0.670 0.883 0.918

HRNet

Baseline 0.708  0.939 0.914
Fine-tuned | o.750 0.903 0.883
Seg. Attn. 0.675 0.894 0.891
ControlNet | 0.766 0.930 0.914

Sapiens-0.3B

Table 5.4: Percentage of Correct Keypoints (PCK) for lower-body landmarks: hips, knees, and
ankles.

To further analyze this, Table 5.5 reports the AP and AR for lower-body keypoints individually.
Unlike PCK, which measures the proportion of keypoints within a fixed threshold, AP and AR
use OKS calculations that dynamically adjust the threshold based on keypoint uncertainty and
scale. This distinction is critical, as whole-pose AP considers all keypoints collectively, making
direct comparisons between whole-body and individual joint AP results impractical. However,

AP and AR remain valuable tools for understanding keypoint-specific behaviors.

Model ‘ Method ‘ Hips Knees Ankles
| | AP AR | AP AR | AP AR

Baseline 0.906 0.930 | 0.942 0.965 | 0.968 0.984
Fine-tuned | 0.910 0.935 | 0.937 0.962 | 0.964 0.982
Seg. Attn. 0.907 0.931 | 0.945 0.966 | 0.969 0.984
ControlNet | 0.914 0.935 | 0.941 0.964 | 0.972 0.985

HRNet

Baseline 0.886 0.938 | 0.958 0.976 | 0.973 0.985
Fine-tuned | 0.923 0.944 | 0.947 0.967 | 0.962 0.980
Seg. Attn. 0.918 0.939 | 0.949 0.967 | 0.958 0.978
ControlNet | 0.927 0.948 | 0.953 0.972 | 0.968 0.984

Sapiens-0.3B

Table 5.5: Average Precision (AP) and Average Recall (AR) for lower-body landmarks: hips,
knees, and ankles.

Despite the lower PCK scores for hips, their AP remains relatively high across all models,
exceeding 0.90 for HRNet and peaking at 0.927 under Sapiens-o0.3B ControlNet. However, the
discrepancy between AP and PCK indicates that these predictions often fail to meet the strict

spatial accuracy requirement of PCK.
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This pattern suggests that the model systematically predicts hips inside the frame, even in
cases where truncation should result in their absence. Rather than omitting hip keypoints
when insufficient visual cues exist, the model appears to extrapolate their locations based on
partial torso visibility. This bias toward in-image hip predictions leads to an overestimating
presence and introduces systematic misplacement, explaining the drop in PCK. This behavior
is analyized further in the next section.

In contrast, knees and ankles exhibit both high PCK and high AP/AR, indicating that their
keypoint estimates are both consistently detected and precisely localized. Knees surpass AP
0.94 for HRNet and exceed 0.95 under Sapiens-0.3B, while ankles maintain the highest AP and
AR across all models. These results confirm that knees and ankles benefit from stronger spatial
cues, while hip keypoints remain a failure case due to truncation ambiguity.

These findings highlight a critical challenge in hip localization: partial truncation misleads
the model into systematically placing hips within the visible frame, even when they should be
missing. Segmentation-based attention and ControlNet yield only marginal improvements,
with fine-tuning showing the most notable gains under Sapiens-o.3B. However, even in the
best case (Sapiens-0.3B ControlNet), hip keypoint estimation remains the most error-prone

among the lower-body landmarks.

5.3 Failure Cases

This section qualitatively analyzes failure cases related to truncation and segmentation accu-
racy to better understand the persistent challenges in hip localization. The goal is to examine
how these factors contribute to systematic errors in keypoint estimation and whether pro-
posed modifications, such as segmentation-based attention or ControlNet, provide meaningful

improvements.

Hip Performance Despite generally strong pose detection performance, hip keypoints
remain a notable failure case across all models. The results in Table 5.4 highlight a significant
drop in hip localization accuracy compared to knees and ankles, with PCK scores consistently
lower across all models. Even the best-performing configuration, Sapiens-0.3B ControlNet,
achieves only 0.766 PCK for hips, whereas knees and ankles exceed 0.90. The discrepancy
between high AP and low PCK further suggests that while the models frequently detect hip
keypoints, they often place them with greater spatial error.

One key factor contributing to these errors is truncation ambiguity. The scanner’s multi-
camera setup often captures partial rather than complete lower-body truncations. Unlike cases

where keypoints are entirely absent and the model can infer their occlusion, these partial
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Figure 5.1: Scanner images illustrating hip keypoint errors. On the left, higher truncation
prevents the network from estimating hip keypoints. On the right, slightly reduced
truncation leads to incorrect in-image placement.

truncations introduce visual uncertainty. The visible torso may only marginally intersect
with the hips, leaving the model without clear localization cues. As a result, the model
systematically estimates hip keypoints within the image, even when they should be missing,
leading to frequent misplacement.

Figure 5.1 illustrates this issue. In the left image, where truncation is more extreme, the
model omits the hip keypoints entirely. In contrast, the right image, which has slightly less
truncation, leads to incorrect in-image placement of the hips. This highlights how even minor
changes in camera positioning or subject stance can shift the truncation boundary, leading to
inconsistent keypoint behavior. Given that PCK measures correctness within a strict distance
threshold, such systematic misplacement results in a disproportionate drop in PCK for hips
compared to other lower-body keypoints. Given the 3D scanner camera setup, many images
with such ambiguous truncations are captured. Figure 5.2 visualizes a select few more.

Another contributing factor is segmentation uncertainty. The Sapiens model employs
segmentation-based attention to refine keypoint estimates. This strategy only provides
marginal improvements for hips. One possible reason is how the segmentation model handles
clothed body regions. Instead of segmenting individual body parts, the model often identifies
entire clothing regions, such as upper clothing and lower clothing. This reduces the granularity
of body part information, leading to ambiguous keypoint placement at transition areas like the
hips.

Figure 5.3 illustrates this segmentation issue. While the bare arms were segmented into
more fine-grained regions, the whole lower body is a single continuous region. Since the
model relies on segmentation cues to refine keypoint placement, this lack of precise body part

delineation further impacts hip and, in general, keypoint localization.

Compared to knees and ankles, the lower accuracy of hip localization stems from a combina-
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Figure 5.2: Scanner images with detection results showing hip keypoint errors. Partial trunca-
tion leads to incorrect predictions, as the model is uncertain whether the hips lie
inside or outside the visible region.

tion of truncation ambiguity, systematic misplacement, and segmentation limitations. Unlike
knees and ankles, which benefit from strong reference cues such as clear joint articulations,
hips often lack well-defined anchors in partially visible cases. This results in a pattern where
the model estimates hip positions with high confidence, as reflected in the high AP scores, but
fails to place them accurately, leading to the observed drop in PCK.

Although fine-tuning and segmentation-based attention introduce refinements, neither
strategy fundamentally resolves the issue of systematic hip misplacement in truncation scenar-
ios. Future improvements may require more robust handling of truncations, such as explicit
occlusion-aware training strategies or dynamic keypoint confidence modeling. These find-
ings confirm that hip localization remains a major challenge, with both truncation-induced

ambiguity and segmentation limitations contributing to persistent errors.

Segmentation Attention Performance The results indicate that segmentation-guided
attention provides only marginal improvements in keypoint localization. This limited impact
can be attributed to how the HRNet and Sapiens backbones process feature maps. As illustrated
in Figure 5.4, both backbones inherently generate feature maps that resemble pseudo-heatmaps,

where high-activation regions correspond to keypoint locations while the surrounding areas
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Figure 5.3: Example segmentation of a MSCOCO [Lin+15] image, where the lower body is
segmented as a single continuous region instead of individual body parts as seen in
the upper body.

exhibit low activation.

Since segmentation-guided attention is applied post-feature extraction, it does not fundamen-
tally modify these internal representations. Instead, it acts as an additional constraint, reinforc-
ing keypoint predictions within the segmented regions. This explains why segmentation-guided
attention primarily improves AP, as it helps suppress irrelevant activations, but has a negligible
effect on PCK, which depends on precise spatial localization. Given that the feature extraction
process remains largely unchanged, segmentation attention is unable to resolve structural
ambiguities, particularly in cases of partial truncation where segmentation lacks sufficient

precision.

5.4 Discussion and Insights

These experiments confirm that truncated images, common in a multi-camera scanner, pose sig-
nificant challenges for human pose estimation. Segmentation-based attention and ControlNet
boost global spatial awareness and moderately improve AP metrics, yet they only slightly
enhance fine-grained localization (PCK). HRNet, having strong feature extraction, sees limited
gains from segmentation-based conditioning, whereas Sapiens-0.3B benefits more—particularly
under ControlNet—due to its transformer architecture and self-attention mechanisms.

ControlNet stands out for Sapiens-0.3B in raising AR and mid-to-high threshold precision,
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|

0.2 0.4 0.6 0.8 1.0

Figure 5.4: Feature maps from the HRNet backbone, highlighting strong activations around
distinct joint locations and serving as pseudo-heatmaps.

reflecting a more robust interpretation of segmentation cues. Nonetheless, the most consistent
performance gains across both models come from fine-tuning with truncation-augmented
data. This training approach helps the network adapt to the partial views instead of relying on
assumptions formed under full-body training conditions.

Inspection of lower-body joints highlights how coarse torso segmentation impedes reliable
hip detection. By contrast, knees and ankles are easier to localize if they are visible at all, since
their truncation boundaries do not introduce the same ambiguity as those that cut through the

hip region.



57

6 Conclusion

This work examined how segmentation-guided attention and ControlNet-based multi-layer
conditioning can mitigate human pose estimation errors under realistic truncation scenarios.
A 3D scanner dataset that captures partial body views was used to reflect practical conditions
for human pose estimation in multi-camera setups. Two architectures, a CNN (HRNet) and
a transformer-based model (Sapiens-0.3B), were evaluated to explore how different feature
extraction strategies respond to partial-view inputs and segmentation cues. Experiments
revealed that segmentation-guided methods enhance high-level spatial awareness by enforcing
structural constraints and improving average precision metrics. However, fine-grained keypoint
localization did not consistently benefit, especially under severe truncation. ControlNet offered
slight advantages over single-stage segmentation attention, but these gains were marginal for
HRNet and low for Sapiens-o.3B. This indicates that both models already capture significant
spatial context and that segmentation-guided attention does not add the necessary auxiliary

information to improve human pose estimation under partial observations greatly.

Segmentation-based methods proved more helpful for visible keypoints since segment masks
clarify ambiguous boundaries within the frame, and the global attention mechanism of Sapiens-
0.3B integrated segmentation constraints more effectively than HRNet. Nonetheless, severe
truncation near the hips or lower-body joints remained problematic, as broad segmentation
masks supply insufficient detail for inferring occluded keypoints. This limitation was amplified
when coarse segmentation labels (for instance, a single torso region) overshadowed anatomical

subdivisions.

Augmenting training data with partial-view images consistently improved keypoint detec-
tion, indicating that architectural modifications alone do not substitute for an appropriate
training distribution. Learning from truncated examples helped bridge the gap between full-
body pretraining and real-world truncated poses. HRNet and Sapiens-0.3B benefited from this

approach, showing that data-centric strategies effectively improve model robustness.
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6.1 Future Directions

Both approaches in this study use an external segmentation model to create the body part
segmentations before keypoint estimation, which makes the process resource-intensive and
slow. A promising future direction involves integrating segmentation and keypoint estimation
within a single model as has been done by [He+17], allowing a shared backbone to jointly
predict both outputs and train it specifically for truncated poses. This approach could improve
keypoint localization while reducing computational overhead by eliminating the need for an
external segmentation model.

Future work could enhance segmentation granularity by dividing the torso into smaller
anatomical regions, such as the upper torso, waist, and hips. This finer segmentation may
introduce more localized constraints, helping to reduce ambiguity in partially visible areas.
Additionally, an adaptive weighting mechanism that dynamically adjusts the influence of seg-
mentation conditioning based on the visibility or confidence of each keypoint or segmentation
mask could help mitigate errors caused by incomplete or inaccurate segmentation.

While finer segmentation maps may enhance the utility of segmentation attention, their
overall effectiveness for improved pose estimation under partial views remains uncertain,
as this study demonstrated. Segmentation maps provide valuable contextual information
about visible body parts but do not fully resolve the challenge of missing pose information
due to truncation. Future research could explore complementary strategies to address these
limitations better.

Therefore, more extensive truncation augmentation, including varied cropping patterns,
perspective distortions, and extreme camera angles, could enhance the model’s ability under
challenging conditions.

Although segmentation-based conditioning has shown modest benefits on truncated HPE in

this study, its potential impact on occlusions warrants further investigation.

6.2 Concluding Remarks

Optimizing the training distribution with truncation-specific augmentation emerged as the
most effective strategy for improving human pose estimation when key body regions are
missing. Segmentation-based conditioning provides structural benefits but does not entirely
compensate for extensive or highly uncertain truncations. The path forward includes more
precise segmentation maps, adaptive weighting, and carefully designed data augmentations
that address persistent boundary errors around areas such as the hips, driving greater reliability

in human pose estimation for real-world contexts.
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