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Abstract
Homomorphic encryption (HE) enables privacy-preserving deep learning, but it comes with significant perfor-
mance overheads. In this study, we evaluate the impact of model architectures on the utility and efficiency of
deep learning models under differential privacy (DP) and HE settings. Our experiments reveal that dedicated
model architectures are crucial for maintaining model utility when using DP. Moreover, we observe that align-
ing complex model architectures like ResNets for HE by replacing ReLU with square activation, max pooling
with average pooling, and group norm with batch norm strongly deteriorates model utility and results in archi-
tectures with sharp minima that fail to generalize. Training such models with DP, however, yields a regularizing
effect that improves model utility. Our study contributes to the understanding of the role of model architecture
on the applicability of DP and HE.
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1. Introduction

With the increasing importance of data privacy, there is a growing need for secure and private ma-
chine learning techniques that can protect sensitive data while still allowing for useful insights to
be generated. Homomorphic encryption and differential privacy are two such techniques that have
emerged as powerful tools for enabling secure and private machine learning [4, 6].

Homomorphic encryption (HE), first introduced in [30], allows for data to be encrypted in a way
that preserves its mathematical structure, enabling computations to be performed on the encrypted
data without first decrypting it. Differential privacy (DP) [10], on the other hand, provides a rigorous
framework for protecting the privacy of individual data points, by adding random noise to the output
of an algorithm in a way that preserves overall statistical properties of the data. Both techniques fulfill
different aspects in privacy-preserving deep learning. HE works towards protecting the sensitive data,
as well as the model weights from being exposed to adversaries during inference while DP obfuscates
the training data in order to protect individual data owners from being exposed through the means of
specifically designed attacks, like model inversion or membership inference. Following [4], we denote
the former as input and model secrecy, respectively, and the latter as data privacy.

We consider a system framework in which both aspects are explicit requirements. More specifically,
our framework comprises a trusted environment where we can train our AI models on sensitive data
in plaintext with the consent of data owners. However, since we deal with sensitive personal data, we
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Figure 1: Overview of the investigated application scenario. We assume that all models are trained in a trusted
environment with differential privacy (DP) in order to protect data owners. At inference time, we encrypt
the data and evaluate the model on the ciphertext rather than on plaintext. The model can be encrypted
additionally to prevent the weights from being exposed to adversaries.

still want to protect individuals and thus apply differential privacy during model training to ensure
plausible deniability. The trained models can then be used for inference on a centralized server. In
order to preserve the privacy of users during model inference, we apply homomorphic encryption.
An overview of this setting is depicted in Figure 1. Using this design, the model can be deployed on
a server that can be considered as an honest-but-curious adversary but still provide input and output
privacy, as well as model secrecy.

Designing privacy-preserving AI solutions comprises several trade-offs between utility (i.e. predic-
tion quality) and privacy, privacy and efficiency, and utility and efficiency, where efficiency includes
both, speed and hardware utilisation. These trade-offs are already well-studied [4, 32] and several op-
timizations have been proposed in order to tighten the gap between plaintext and homomorphically
encrypted image classification models [3, 5, 12, 33, 36] or designing more accurate model architectures
for DP [8, 16, 20, 29, 31]. Little work has been published on the combined setting, i.e. optimizing deep
learning architectures for accurate predictions under DP and fast inference using HE.

In this work, we compare several convolutional neural network (CNN) architectures regarding their
utility on two image classification datasets with different data complexity, both with and without DP
applied. We then exchange several building blocks of those networks in order to make them compat-
ible with HE and repeat the experiments. We observe significant deterioration in model utility when
aligning model architectures for HE that were originally designed for the application of DP. However,
the application of DP seems to have regularizing effects on the model training, thus improving the
results on the HE-aligned model architectures. Overall, this paper contributes to the growing body of
work on secure and private machine learning, and provides insights into the practical considerations
involved in designing and implementing these systems.

The remainder of this paper is structured as follows. Section 2 reviews related work in the areas
of homomorphic encryption, differential privacy and analysis of deep learning model architectures.
Section 3 describes the investigated model architectures and training procedure. In Section 4, we
report our results and interpret and discuss them in Section 5 while also pointing out the limitations
of this work. Finally, Section 6 concludes this work.

2. Related Work

In the following, we review literature published on homomorphic encryption and differential privacy
with a specific focus on image classification applications.



2.1. Homomorphic Encryption

First introduced in [30], HE enables evaluating functions over encrypted data. Dowlin et al. [12] intro-
duced CryptoNets, the first deep learning architecture specifically designed for HE. The architecture
uses squared activation functions and scaled max pooling, but only consists of two convolutional lay-
ers. Chabanne et al. [5] extended CryptoNets to six layers by using a polynomial approximation of
the ReLU activation function preceded by a batch normalization layer [15]. Although normalization
in theory incorporates the computation of a square root, the approximation of this can be mitigated
by reparameterizing the layer weights and biases prior to the normalization layer [14]. Badawi et
al. [3] introduced the first homomorphically encrypted CNN that can run on a GPU. Nandakumar et
al. [26] proposed a fully homomorphically encrypted training algorithm for deep neural networks.
While all of the previously mentioned works evaluated their approaches only on MNIST or CIFAR-
10, Wingarz et al. [33] investigated the scalability of HE for datasets with higher input and output
dimensionality by leveraging parameter quantization and pre-processing for faster encryption. In
general, HE induces an enormous computational overhead, especially on high resolution image data
[33]. Therefore, all of the network architectures introduced in the publications mentioned above are
significantly smaller than state of the art architectures in visual computing.

2.2. Differential Privacy

Differential privacy [10] is arguably the most popular data privacy mechanism, providing a mathe-
matically rigorous privacy guarantee in the form of a privacy budget (𝜖, 𝛿). This budget depends on
the dataset size and number of training epochs. In deep learning, DP is usually applied to the gra-
dients during optimization with the DP-SGD optimization algorithm [1], which obfuscates the exact
gradients with noise sampled from a normal distribution. Due to this obfuscation, the application
of differential privacy results in neural networks with a lower prediction accuracy opposed to non-
private counterparts. Several model architectures have been proposed to reduce the loss in accuracy
under DP. Proposed optimizations to the training process of established network architectures in or-
der to enable DP on large-scale vision datasets include the application of weight standardization [28],
replacing batch normalization with group normalization [34], increasing the batch size [24], applying
parameter averaging [27] and pre-training on a non-private dataset [8, 20]. Remerscheid et al. pro-
posed SmoothNets [29], a model family found by a neural architecture search subjected to various
observations about the implications of specific hyperparameter choices on the model utility under
DP. Especially the width-depth ratio when scaling neural networks seems to be of importance when
using DP [8, 29].

2.3. Analyzing Deep Learning Architectures

Since deep learning optimization is highly non-convex, many local optima, as well as saddle points
and plateaus exist in the loss landscape [7]. Li et al. [22] proposed a method to visualize the loss
landscape of neural networks and investigate the implications of several architectural decisions, like
the inclusion of skip connections, on the structure of the loss landscape. Dinh et al. [9] showed that
flatness of minimizers is not necessarily correlated to the generalization ability of the network. Keskar
et al. [17] reported a tendency of large batch optimization to converge to sharp minimizers, whereas
small batch sizes seem to have a regularizing effect and converge to flat minimizers. Besides the
topological structure of the loss landscape, other theories of generalization focus on norms expressed
over the weight space [21], model compression under the PAC-Bayes Framework [23] and formulation
of data-dependend error bounds [11].



3. Methodology

From the literature review we identified several orthogonal neural network architecture design deci-
sions when optimizing either for DP or HE. While wide architectures, like wide ResNets [37], seem
to outperform other architectures for DP [8], HE architectures are usually restricted in their width
and depth in order to limit the number of multiplications in a forward pass. In addition, the applica-
tion of the ReLU non-linearity requires a polynomial approximation in HE architectures, with square
activation being the approximation with the lowest degree. Furthermore, max pooling is not applica-
ble in HE and thus is usually replaced with (scaled) average pooling. Batch normalization layers can
be reparameterized and are therefore applicable in both scenarios. However, several DP-optimized
architectures include group normalization [34] instead of batch norm. Unfortunately, the reparame-
terization trick [14] does not generalize from batch normalization to group normalization, since the
latter depends on on-the-fly computed statistics over channel groups, involving the computation of a
square root. Using group normalization in HE therefore requires the approximation of a square root.
In our experiments, we replaced group norm with batch norm when training models for HE.

3.1. Baseline Architectures

We implemented two baseline architectures, one optimized for DP and the other optimized for HE.
In order to compare the effects of orthogonal model architecture designs on the opposing privacy
regime, we adjusted the respective baseline architectures to meet the best practices from the other
regime. Specifically, we removed restrictions on activation functions and pooling layers from the HE
baseline and added those to the DP baseline. Furthermore, we implemented two variations of these
baseline architectures as described below.

Our DP baseline model is inspired by [8] and is a Wide Residual Network (WRN) [37] with width
scaling 𝑘 = 2. Like [8], we replaced batch normalization with group normalization. The number of
groups of the group normalization layers in the WRN Blocks is 𝐶𝑜𝑢𝑡

4 , where 𝐶𝑜𝑢𝑡 denotes the number
of output channels of the preceding convolutional layer. See Table 1 for the concrete architecture
in the plaintext and HE settings. Our variation of this model includes a thinner model with a width
multiplicator of 𝑘 = 1

2 while also halving the number of filters in the first convolution layer (which
in original Wide ResNet does not depend on 𝑘) in order to reduce the number of multiplications and
make the application of HE feasible. We refer to these models as Wide ResNet and Tiny ResNet,
respectively.

For our HE baseline, we adopted two distinct versions of CryptoNet [12]: the original version as
described in [12], and an adapted variation that incorporates findings from the DP deep learning lit-
erature suggesting that increased width is a beneficial factor for DP training. Specifically, our adapted
version features an increase in width by a factor of 3 for all convolutional layers of the baseline Cryp-
toNet. We refer to the former model as CryptoNet and the latter as CryptoNet-L for the remainder of
this paper.

3.2. Model training

We built and trained all models with TensorFlow and used the HeLayers Library for homomorphic en-
cryption [2]. We performed our experiments on the Fashion-MNIST [35] and CIFAR-10 [19] datasets.
Table 2 summizes the characteristics of both datasets. We trained all networks with batch sizes of
128 and learning rates of 10−3. For non-DP experiments, we used the Adam Optimizer with default
parameters [18], and for DP experiments, we used the differentially private counterpart of Adam im-



Table 1
DP-optimized Baseline architecture (left) and our alignment in order to support HE. Numbers in brackets
denote number of filters in convolutional layers. Like [37], we use filter sizes of 3 × 3 in all Conv layers. We
trained models for 𝑘 = 2 and 𝑘 = 1

2 . Our fully connected network (FCN) classifier consists of three layers with
ReLU/Square activations and 64, 16, and 10 units respectively.

Layer DP-optimized Architecure HE-aligned Architecture (HE-)WRN Block

1 Conv (16) Conv (8)
l-1

l+1

Conv ( )

BN / GN

ReLU/Square

Conv ( )

BN / GN

ReLU/Square

2 GroupNorm(4) BatchNorm()
3 ReLU() Square()
4 WRN Block 1 (16 × 𝑘) HE-WRN Block 1 (16 × 𝑘)
5 WRN Block 2 (32 × 𝑘) HE-WRN Block 2 (32 × 𝑘)
6 WRN Block 3 (64 × 𝑘) HE-WRN Block 3 (64 × 𝑘)
7 Average Pooling Average Pooling
8 Classifier FCN Classifier FCN

Table 2
Characteristics of the dataset under study.

Dataset Contents Image Dimensions # Images (Train/Test) # Classes

Fashion-MNIST Clothing 28 × 28 × 1 60.000/10.000 10
CIFAR-10 Animals and Vehicles 32 × 32 × 3 50.000/10.000 10

plemented in TensorFlow Privacy [13]. We trained all DP Models to suffice (8, 10−5)-DP on all datasets
in the Rényi-DP setting [25].

4. Results

We conducted three experiments for which we report results in the following subsection. First, we
trained all DP-optimized models, i.e. the baseline Wide ResNet, Tiny ResNet and both DP-aligned
CryptoNets, with and without DP. After that, we repeated the process for our HE-optimized Cryp-
toNets and the HE-aligned Wide ResNets. We also encrypted those models and evaluated their per-
formance and relative inference speed drop compared to the plaintext models. Finally, we analyzed
the loss landscape of the local minima identified for all models.

4.1. DP-optimized Architectures

Figure 2a summarizes the results on the DP-optimized Wide ResNets and the DP-aligned CryptoNets
evaluated over the test sets of Fashion MNIST and CIFAR-10. We observe no significant differences
in the performance of these models on the Fashion MNIST dataset when trained without DP. As
expected, the performance gap is smaller for Wide ResNet and Tiny ResNet since those models are
optimized for DP. Wide ResNet is performing best. On CIFAR-10, this finding replicates, but the gap
between non-DP and DP models is larger across all models, indicating a correlation between dataset
complexity and model performance under the application of DP.
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Figure 2: Accuracies of all trained Models on the Fashion MNIST and CIFAR-10 datasets. w/ DP, w/o DP.
CN(-L): CryptoNet(-L), WRN: Wide ResNet, TRN: Tiny ResNet

Table 3
RAM usage and ratio of inference time for inference on encrypted data. Both, model and data are encrypted.

Model Fashion MNIST CIFAR-10
RAM used Inf. time scaling factor RAM used Inf. time scaling factor

CryptoNet 14.7 GB 158.0 12.7 GB 41.5
CryptoNet-L 31.3 GB 141.0 31.5 GB 68.7

4.2. Homomorphic CNNs

Figure 2b shows the results for the HE-optimized CryptoNets and the HE-aligned Wide ResNet and
Tiny ResNet. Notably, the performance of both CryptoNets does not change drastically when using
HE building blocks instead of DP counterparts. In contrast, both ResNet architectures perform ter-
rible in the HE-aligned setting. For CIFAR-10, the non-DP models completely fail to make accurate
predictions on the test set. The predictions for Fashion MNIST are also poor, as can be seen by the
large drop in prediction accuracy. Interestingly, the DP models perform better on both datasets, in-
dicating a regularizing effect of DP on these model architectures. In Table 3 we report the relative
difference in inference speed for all homomorphically encrypted networks compared to their plain-
text counterpart, as well as used RAM for the prediction. We were unable to compute results for both
ResNet architectures, since our workstation1 ran out of memory for those models. We only report
the average relative increase in inference time for a single data sample, since wall clock time depends
strongly on the hardware used for evaluation.

4.3. Visualizations of local minima

We applied the visualization method proposed by Li et al. [22] to all models and evaluated the im-
plications of DP/HE-alignment on the structure of the loss landscapes. The results are depicted in
Figure 3. We observe different effects for HE-aligned models, as well as for models trained with DP
and without DP. For CryptoNet and Tiny ResNet, the application of DP introduces visible distortions
to the loss-landscape in the model architectures without HE-alignment (subfigures 3b and 3f) com-
pared to the non-DP models (subfigures 3a and 3e). This can be particularly observed in the contour
lines that are projected onto the 𝑥𝑦-planes. When applying both, HE and DP, the loss surface is less
distorted (subfigures 3d and 3h). Across all models, the application of HE yields steeper valleys and
thus, sharper minimizers (subfigures 3c, 3d, 3g and 3h), while the application of DP in this setting

1Intel® Xeon® Silver 4114 CPU 2.20 GHz and 64 GB of DDR4 RAM
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Figure 3: Loss-Landscapes for CryptoNets (a-d) and Tiny ResNet (e-h). Best viewed digitally and zoomed in.
All 𝑧-values are on log-scale. Abbreviations in subfigure captions are: CN: CryptoNet, TRN: Tiny ResNet, HE:
Architecture for HE, DP: model trained with DP. –HE and –DP means without HE or DP, respectively. Models
are trained and evaluated on CIFAR-10. Loss values are computed using categorical cross-entropy.

seems to attenuate this effect and thus regularize the optimization in the HE setting (subfigures 3d
and 3h), especially for Tiny ResNet.

5. Discussion

Our results confirm the importance of dedicated model architectures for the application of DP in order
to close the performance deterioration induced by DP. Wide ResNet and Tiny ResNet did perform
better in the non-HE setting than both CryptoNets in our experiments. We note at this point that
our Tiny ResNet comprises ∼29𝑘 parameters, whereas CryptoNet comprises ∼28𝑘 parameters. Both
models have significantly less parameters than CryptoNet-L (∼119𝑘) and Wide ResNet (∼336𝑘). Since
Tiny ResNet outperforms CryptoNet-L with and without DP, the parameter count of a model does
not seem to be the most important architectural property for model utility. Our results indicate that
the network topology has a direct impact on utility when applying DP. Especially on Fashion MNIST,
the utility gap between the DP and non-DP models is smaller compared to the CryptoNets. However,
on CIFAR-10 this result is not as straightforward. While both ResNets outperform CryptoNets, the
gap between DP and non-DP models is approximately similar for all models, indicating that regarding
more complex datasets other tools are required to close this gap. Towards this, [8, 20] have leveraged
data augmentation, learning rate schedules, and other tweaks to the training procedure in order to
obtain tighter utility gaps. Hence, architecture alone can help to close this gap, but does not suffice
on its own.

Aligning more complex model architectures like ResNets for homomorphic encryption strongly
deteriorates model utility. We have observed that replacing ReLU with square activation, max pooling
with average pooling, and group norm with batch norm results in model architectures with sharp
minima which in our experiments completely failed to generalize to the test set. Training these models
with DP, however, seems to yield a regularizing effect that increases model utility to a level that is
competitive with the results of DP-trained CryptoNets. However, encrypted evaluation of both ResNet



architectures failed using the HELayers library [2] because of memory restrictions. Presumably, this is
due to the presence of skip connections. Without these, each layer including its corresponding inputs
can be loaded separately into the memory. Concerning skip connections, the intermediary results of
multiple layers need to be kept in memory, thus resulting in higher RAM allocations that exceeded
our 64GB main memory even for the Tiny ResNet. We note that one could evade this problem through
engineering effort, i.e., providing more efficient implementations for the inference of skip connections.
However, we have not conducted any further investigation and leave it to future work.

Overall, we note that the increase in inference time and RAM usage is significant for the application
of HE on deep learning, even for small models as CryptoNets on small toy datasets such as Fashion-
MNIST and CIFAR-10. While related work such as [33] have investigated the scalability of HE-enabled
deep learning on datasets with higher complexity and dimensionality, they do not consider complex
network architectures as our Tiny ResNet, which yield better results in the plaintext setting while
having an approximately similar amount of parameters. In the computer vision literature, residual
networks and other complex architectures with millions of parameters yield state of the art results.
Given the computational complexity and resource requirements for our small networks, applying HE
to state of the art models is intractable in real world use cases.

5.1. Limitations

We have limited our study to minimal requirements for homomorphic encryption. Existing work on
HE-enabled deep learning comprises model architectures with polynomial approximations of activa-
tion functions of higher degree. Using these approximations could close the observed gap between
the DP-optimized architectures and their HE-aligned counterpart. On the other hand, it may lead to
further increase in computational complexity of the inference with homomorphically encrypted data.
Future work should investigate upon that. In addition to that, the loss landscape visualization that we
have used only provides a high level idea about the generalizability of the model architectures. Other
methods have been proposed in the literature that may give more insight. However, this is still a very
active area of research.

6. Conclusion

In conclusion, our research findings underline the importance of dedicated model architectures for the
application of differential privacy (DP) in order to close the performance deterioration induced by DP.
Specifically, we have observed that Wide ResNet and Tiny ResNet perform better in the non-HE set-
ting than CryptoNets. Moreover, the network topology seems to have a great impact on utility when
applying DP. While Tiny ResNet outperforms CryptoNet-L with and without DP, our results indi-
cate that the number of model parameters is not the most significant architectural property regarding
model utility. Furthermore, we have observed that aligning more complex model architectures like
ResNets for homomorphic encryption strongly deteriorates model utility. While related work has
investigated the scalability of HE-enabled deep learning on datasets with higher complexity and di-
mensionality, they do not consider complex network architectures like our Tiny ResNet, which yield
better results in the plaintext setting while having an approximately similar amount of parameters.
However, evaluating ResNets in an encrypted setting drastically increases the resource requirements
compared to CryptoNets, thus rendering homomorphic encryption impractical for these model archi-
tectures.
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