Course title Course code	Circuit Analysis 2 EEIB220
Module coordinator	Miriam Heinrich
	Prof. Dr. Alfons Klönne
Lecturer Level of course	Bachelor
Recommended	
prerequisites	Locturo
Type of course Weekly lecture hours	Lecture 4
(SWS)	
ECTS credits	4
Workload	in total 120 h, 60 h course attendance, 60 h self-study
Assessment (grading; pass/fail)	graded
Regular cycle	Summer semester
Language of instruction	English
Contents:	Sinusoidal inputs and their representations
	Instantaneous, Average, and RMS Values
	Impedance and Series RLC Circuits • Admittance and
	Parallel RLC Circuits
	Transfer Function of RLC Circuits
	• Bode diagram
	Power in AC circuits
	Resonance
	Three-Phase circuits
Learning outcome (competencies):	Participants will be able to describe and analyze Alternating Current (AC) circuits. After having successfully completed the course, they should
	 be able to describe periodic AC signals can determine arithmetic mean and root mean square values
	of AC signals • understand how to transfer time invariant sinusoidal functions
	into complex vectors be able to describe AC Circuits under steady state condition
	• know how to analyze AC circuits by complex RLC circuit
	analysis • be endued with the transfer function of AC circuits • understand and apply Bode diagrams
	know the criteria of resonant circuits
	• understand the principle of Three-Phase circuits
	• be able to calculate the power in AC circuits and Three-
	Phase circuits in order to develop a deepened understanding
	of electric systems that are widely used in communication and
	power system engineering.
Teaching methods	☐Group work
	□Exercises □Simulation
	□Video feedback □Others: Please click here for inserting text
Assessment methods	
Recommended reading	Written exam (lecture) Presentations and Media on Ilias learning platform
Necommended reading	Jacob, Michael: Advanced AC Circuits and Electronics:
	Principles and Applications, Herrick & Jacob Series, 2003
	Rawlins, Clay: Basic AC Circuits, Newnes, 2000
Additional information	